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Abstract A considerable amount of work has been done in data clustering research
during the last four decades, and a myriad of methods has been proposed focusing on
different data types, proximity functions, cluster representation models, and cluster
presentation. However, clustering remains a challenging problem due to its ill-posed
nature: it is well known that off-the-shelf clustering methods may discover different
patterns in a given set of data, mainly because every clustering algorithm has its own
bias resulting from the optimization of different criteria. This bias becomes even more
important as in almost all real-world applications, data is inherently high-dimensional
and multiple clustering solutions might be available for the same data collection. In
this respect, the problems of projective clustering and clustering ensembles have been
recently defined to deal with the high dimensionality and multiple clusterings issues,
respectively. Nevertheless, despite such two issues can often be encountered together,
existing approaches to the two problems have been developed independently of each
other.

In our earlier work [35] we introduced a novel clustering problem, called Projec-
tive Clustering Ensembles (PCE): given a set (ensemble) of projective clustering solu-
tions, the goal is to derive a projective consensus clustering, i.e., a projective cluster-
ing that complies with the information on object-to-cluster and the feature-to-cluster
assignments given in the ensemble. In this paper, we enhance our previous study and
provide theoretical and experimental insights into the PCE problem. PCE is formal-
ized as an optimization problem and is designed to satisfy desirable requirements on
independence from the specific clustering ensemble algorithm, ability to handle hard
as well as soft data clustering, and different feature weightings. Two PCE formula-
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tions are defined: a two-objective optimization problem, in which the two objective
functions respectively account for the object- and feature-based representations of the
solutions in the ensemble, and a single-objective optimization problem, in which the
object- and feature-based representations are embedded into a single function to mea-
sure the distance error between the projective consensus clustering and the projective
ensemble. The significance of the proposed methods for solving the PCE problem has
been shown through an extensive experimental evaluation based on several datasets
and comparatively with projective clustering and clustering ensemble baselines.

Keywords Clustering · Clustering ensembles · Projective clustering · Multi-
objective optimization

1 Introduction

Given a set of data objects as points in a multi-dimensional space (or feature space),
the problem of clustering is to discover a number of homogeneous subsets of data,
called clusters, which are well-separated from each other. Clustering is the key step
for many tasks in data management and mining that require the discovery of unknown
relationships and patterns in large sets of data [42, 31].

Most of the existing approaches to clustering provide single clustering solutions
and/or use the same (typically very large) feature space. The latest advances in clus-
tering research have focused on methods for solving issues that are concerned with
two major aspects: (i) dealing with high dimensionality, and (ii) handling multiple
organizations (clustering solutions) of the data.

Almost all problems of practical interest are high-dimensional, i.e., they involve
data objects represented by large sets of features. A common scenario with high-
dimensional data is that several clusters may exist in different subspaces that corre-
spond to different combinations of features. In general, it is unlikely that all features
of the data objects are equally relevant to form meaningful clusters.

Another challenge in the clustering process is due to the fact that, in many real-life
domains, multiple, potentially meaningful groupings of the input data can be avail-
able, hence providing different views of the data. For instance, in genomics, multiple
clustering solutions would be needed to capture the multiple functional roles of genes.
In text mining, documents inherently discuss multiple topics, hence their grouping by
content should reflect different informative views which correspond to multiple (pos-
sibly alternative) clusterings. In evolving data (streams) management, users could be
interested in different views of the data that may correspond to different informative
needs.

Recent advances in data clustering have led to the definition of the problems of
projective clustering (to deal with high dimensionality) and clustering ensembles (for
handling multiple clustering solutions).

Projective clustering. Projective clustering (or projected clustering) [63, 85, 1, 23,
56] aims to discover projective clusters, i.e., subsets of the input data having different
(possibly overlapping) subsets of features (subspaces) associated to them. Projective
clustering is closely related to the subspace clustering problem [4, 65, 47, 57], as
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both detect clusters of data points that exist in subspaces of a dataset; however, the
problem definition in subspace clustering is actually to search for all clusters of data
points in all meaningful subspaces of a data set.

Being able to discover clusters of data points in subsets of features, projec-
tive clustering aims to solve issues that typically arise in high-dimensional data,
namely sparsity and concentration of distances. The former issue is inherent in high-
dimensional datasets, since the number of data points required to represent any dis-
tribution exponentially grows with the number of dimensions. The latter issue refers
to a lack of distances in distinguishing between data points as dimensionality in-
creases [11, 41, 73]. These problems are sometimes also referred to as the curse-
of-dimensionality [10]. The identification of compact clusters in high-dimensional
feature spaces can hence be meaningful only if the assigned objects are projected
onto the corresponding natural subspaces.

Any projective cluster is hence coupled with a twofold information: the object-
to-cluster assignment (whether an object belongs to that cluster) and the feature-
to-cluster assignment (whether a feature belongs to the subspace assigned to that
cluster). Projective clusters tend to be less noisy—because each group of data is rep-
resented over a subspace which ideally does not contain features that are irrelevant
or redundant for that group—and more understandable—because the exploration of
a cluster is much easier when only few, descriptive features are involved.

This ability of projective clustering fits well an important characteristic of most
real-life application domains, in which the clusters of data objects depend on the type
of information (i.e., the subset of features) used to represent/group the data. For in-
stance, in the context of object recognition, projective clustering methods can provide
better solutions to the image segmentation problem as they are able to identify dense
regions into an image, where the associated subspaces are based on features like pixel
color, intensity, or texture. Moreover, in wireless sensor networks and environmen-
tal monitoring applications, sensor nodes can be differently partitioned according to
their readings (time series) that capture different behavioral trends of the sensors in
response to well-distinguished environmental events. In customer segmentation ap-
plications, customers can be differently partitioned depending on which part of their
demographic profile (e.g., education, occupation) or behavioral profile (e.g., purchase
habits, needs expressed through preferences manifested in everyday behavior).

Clustering ensembles. Clustering ensembles [71, 75, 22, 33], also known as consen-
sus clustering [64] or aggregation clustering [34], are concerned with the following
problem: Given a set of clustering solutions (called ensemble), derive a consensus
clustering as a (new) clustering by the optimization of a certain objective function
(the consensus function) which expresses how well any candidate consensus cluster-
ing complies with the solutions in the ensemble.

Clustering ensemble methods resort to the idea of combining multiple classi-
fiers [68, 15], and adapt it to a clustering context: due to algorithmic peculiarities
of any specific clustering method, a single clustering solution may not be able to
capture all facets of a given clustering problem. In this case, it is useful to generate
an ensemble by varying one or more aspects of the clustering process, such as the
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clustering algorithm, the parameter setting, or the number of clusters, and eventu-
ally obtain a consensus clustering by properly “aggregating” the information in the
ensemble.

Moreover, clustering ensemble methods find application for multi-view data,
where a set of clustering solutions is naturally available rather than a single one, but
the results to present should have the form of a unique solution. Typical examples of
such scenarios are distributed clustering, where each node in the distributed environ-
ment stores its own portion of the entire data and outputs a clustering that considers
only that portion; or privacy preserving clustering, where different representations of
the same set of objects are maintained in different sites for privacy purposes.

Projective clustering ensembles. Projective clustering and clustering ensembles have
been so far developed independently of one another: projective clustering avoids the
curse-of-dimensionality in high-dimensional feature spaces, but cannot handle sets
of multiple clusterings, whereas clustering ensemble methods address the multi-view
nature of clustering, but do not face in general the high dimensionality issue. The
state-of-the-art of research in clustering lacks a unified framework capable of han-
dling both issues, thus we aim to bridge them through the projective clustering ensem-
bles (PCE) problem [35]: Given a set of projective clustering solutions, or projective
ensemble, derive a projective consensus clustering that complies with the information
available from the projective ensemble. This information is only expressed in terms
of object-to-cluster and feature-to-cluster assignments, and hence feature relevance
values are assumed to be unavailable.

Intuitively, each projective cluster is characterized by a distribution of member-
ships of the objects as well as a distribution over the features that belong to the sub-
space of that cluster. Figure 1 illustrates a projective clustering ensemble with three
clustering solutions, which are obtained according to different views over the same
database. A projective cluster is graphically represented as a rectangle filled with a
color gradient, where higher intensities correspond to higher memberships of objects
to the cluster. Clusters of the same clustering may overlap with their gradient (i.e.,
objects can have multiple assignments with different degrees of membership), and
colors change to denote that different groupings of objects are associated with differ-
ent feature subspaces. In the figure, a projective consensus clustering is derived by
suitably “aggregating” the ensemble members. Indeed, the first projective consensus
cluster is derived from C ′1, C ′′2 , and C ′′′2 , the second projective consensus cluster is
derived fromC ′2,C ′′3 , andC ′′′3 , finally the last cluster is derived fromC ′4,C ′′1 , andC ′′′1 .
Note that the resulting color in each projective consensus cluster resembles a merge
of colors in the original projective clusters, which means that a projective consensus
cluster is associated with a subset of features shared by the objects in the original
clusters.

The PCE problem faces a major challenge that lies in the twofold nature of the
information to be aggregated: both the objects and the subspace associated to each
cluster need to be identified, and the two sides of the aggregation should depend on
one another. This challenge is emphasized by the fact that existing clustering en-
semble methods cannot be applied to solve the PCE problem, since they cannot de-
rive a projective consensus clustering starting from an ensemble of solutions each of
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Fig. 1 Illustration of a projective clustering ensemble and derived consensus clustering. Each gradient
refers to the cluster memberships over all objects. Colors denote different feature subspaces associated
with the projective clusters.

which is outputted by a projective clustering method—traditional clustering ensemble
methods can only aggregate the information about the object-to-cluster assignments,
whereas they are not conceived to aggregate the information about the feature-to-
cluster assignments.

Any application domain that needs or can reuse multiple organizations that reflect
different perspectives on the data and a high number of features are used to represent
data can be profitably assisted by a PCE method. Applications previously discussed
respectively for projective clustering and clustering ensembles could be likely de-
vised in an integrated way. Here we illustrate another scenario in which users want to
skim a given collection of news from an online repository. The news are organized in
two levels. A first-level page only provides the highlights of the news, such as titles
and headlines. A read-more link must be followed to reach a second-level page, con-
taining the full-text content (body) of the news; second-level pages however could
not be freely available, as, e.g., users must register and pay a fee to access them. Each
news is tagged with one or more keywords concerning the themes discussed, the
countries involved in the events described, or political/financial companies that are
implicitly or explicitly mentioned in the news. These tags can be used to provide dif-
ferent perspectives on the news categorization (e.g., one categorization by “theme”,
or by “company”), and hence multiple alternative groupings (clusterings) of the news
could be made available to the users. Now, suppose that a user wants to take advan-
tage of an online retrieval system that has two main functionalities: (i) exploiting a
new clustering of the news that takes into account all the predefined categorizations
in an integrated way, and (ii) enabling the search for news through the exploration
of a cluster-based index which stores a summary of the representative content of any
cluster in the form of descriptive terms of the cluster. In particular, the latter func-
tionality of the system requires the availability of a subset of features of the news
assigned to a given cluster.
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A PCE approach is definitely required to enable an application like the one above
described. Indeed, without the possibility of accessing the entire content of the news,
it would be hard for any standard (projective) clustering method to provide effec-
tive solutions to this problem (as only a summarized content of the news would be
used), and more importantly it would be infeasible to provide a single clustering of
the news that can be orthogonal to all existing categorizations. On the other hand, any
traditional clustering ensemble approach would certainly be able to reuse the various
theme-/company-/country-oriented categorizations of the news by exploiting them as
clustering solutions to be incorporated into an ensemble. But traditional clustering
ensembles would not be able of handling the most-relevant terms related to the vari-
ous clusters of news; consequently, the assignment of news to clusters would not be
necessarily consistent with the relevance of terms that represent the news of a cluster.

Analogous examples of real-life application of PCE include the categorization of
scientific papers given the availability of only summarized information such as title,
abstract, keywords, and taxonomic subject fields (e.g., Medical Subject Headings
(MeSH), or ACM Computing Classification categories and terms). Yet, in order to
develop a system that automatically groups web bookmarks given only their URLs,
while ignoring the content of the sites hosting the bookmarks, PCE approaches would
simply refer to the implicit categorizations provided by web directory services, such
as Google Directory or Yahoo! Directory, to build a projective ensemble, and properly
derive an output projective consensus clustering.

Contributions. Projective ensembles are composed by axis-aligned (or axis-parallel)
projective clustering solutions, i.e., solutions in which the subspace associated to each
projective cluster is given by a subset of the original feature space. This subset may be
expressed either by specifying whether each feature is part of that subspace [56, 63,
83, 3, 12] (unweighted feature-to-cluster assignment), or by defining proper feature
weights (probabilities) that express the strength according to which a given feature
participates to that subspace [23, 17] (weighted feature-to-cluster assignment).

Since we are interested in developing PCE methods that are as general as possible,
we require the PCE objective functions have to fulfil the following desiderata:
1) Independence from the original feature values of the input data. Any valid PCE

formulation should take into account only information about object- and feature-
to-cluster assignments, while discarding any information about the specific fea-
ture values of data objects, because in many applications this is not available;

2) Independence from the specific clustering algorithm(s) and from any prior knowl-
edge on the setup (e.g., setting of possible input parameters), and from the strat-
egy (e.g., number of output clusters or subsets of features and/or objects) used
to generate the projective ensemble, since, again, this information is usually not
available;

3) The ability to handle projective ensembles whose solutions have hard as well as
soft object-to-cluster assignments;

4) The ability to deal with feature-to-cluster assignments that are both unweighted
and weighted.
To this end, we define two formulations of PCE: as a two-objective and as a

single-objective optimization problem. The multi-objective formulation involves two
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distinct objective functions, each embedding one side of the projective ensemble
components: the data clusterings and the assignments of features to clusters. The
second formulation aims at solving some issues that arise from the two-objective
formulation, such as poor efficiency and/or hard interpretation of the results. In par-
ticular, it is based on a single-objective function which acts as an error criterion in the
computation of a candidate projective consensus clustering. It involves the object-
based representation and the feature-based representation of the various projective
clusters simultaneously. For each of the two proposed formulations of PCE, we de-
velop well-founded heuristics, in which a multi-objective evolutionary strategy [18]
and an EM-like approach are respectively employed.

We conducted an extensive experimental evaluation on 22 datasets, including
benchmark, synthetic and time series datasets, and involving both external and in-
ternal cluster validity criteria. In addition, we considered a case study to assess how
well our PCE approach is suited for a real-world application. We compared the results
of the proposed PCE methods with those achieved by four baselines, which also in-
clude projective clustering and clustering ensemble methods. Results have shown that
both the proposed algorithms produce more accurate projective consensus clusterings
than the baseline methods, both in terms of similarity w.r.t. the reference classifica-
tions (external assessment criteria) and in terms of similarity w.r.t. the solutions in
the projective ensemble (internal assessment criteria). Comparing the two proposed
methods to one another, the two-objective-based approach generally leads to more
accurate results, whereas the single-objective-based one is more efficient.

We would like to point out that the first formal definition of the PCE problem
and heuristics to solve it were introduced in our earlier work [35]. Besides a new
and extensive experimental evaluation, in this paper we have thoroughly deepened
our understanding of the PCE problem, providing theoretical insights into both the
proposed formulations, comparing their features and highlighting their differences.

The next section briefly overviews the state-of-the-art for projective clustering
and clustering ensembles. Section 3 provides the problem definition, and Section 4
presents our solutions. Section 5 describes our experimental evaluation, and Section 6
concludes the paper. Finally, we report in Appendix the proofs of all the results de-
rived in the paper.

2 Related Work

In this section, we overview the main literature on projective clustering and clustering
ensembles. We point out that none of the following discussed methods is closely
related to ours, since each of them develops a solution for either one or the other
problem.

2.1 Projective Clustering

Existing (axis-aligned) projective clustering methods can be classified into four main
approaches, namely bottom-up, top-down, soft, and hybrid [47, 57].
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Bottom-up projective clustering. Bottom-up methods are based on two steps: finding
subspaces recognized as “interesting”, and assigning each data object to the most
similar subspace. The projective cluster structure is computed in a bottom-up fashion
by searching for the subspaces to be associated to the discovered projective clusters.

The Projected Clustering via Cluster Cores (P3C) algorithm [56] deals with nu-
meric as well as categorical data, and is designed to work with projective clusters
that exist in subspaces spanned by very few features. P3C is also able to compute
overlapping projective clusters.

In [69], the Support and Chernoff-Hoeffding bound-based Interesting Subspace
Miner (SCHISM) algorithm is proposed to mine interesting subspaces rather than
projective clusters; hence, SCHISM is not an actual projective clustering algorithm,
since it solves a related problem: finding subspaces to look for clusters.

Top-down projective clustering. Top-down approaches aim to find the subspaces
starting from the full feature space.

Efficient Projective Clustering by Histograms (EPCH) [63] identifies dense re-
gions in each low-dimensional histogram. In [54], the CLustering based on decision
Trees (CLTree) algorithm assigns a common class label to all input objects and adds
additional objects uniformly distributed over the data space and labeled by a different
class. Then, a decision tree is trained to separate the two classes.

Further approaches belong to hierarchical, partitional relocation, and density-
based categories. Hierarchical algorithms are proposed in [83, 1]. HARP (a Hier-
archical approach with Automatic Relevant dimension selection for Projected clus-
tering) [83] follows an agglomerative hierarchical clustering (AHC) scheme with
single link, and requires two main parameters to control the cluster construction: the
minimum number of selected features and a threshold for selecting a feature in a clus-
ter being formed. Unlike HARP, the Hierarchical Subspace Clustering (HiSC) algo-
rithm [1] produces a hierarchy of nested projective clusters, i.e., a dendrogram stor-
ing relationships of lower dimensional projective clusters that are embedded within
higher-dimensional projective clusters.

Partitional relocation methods [3, 84] follow a classic iterative relocation scheme.
PROjected CLUStering algorithm (PROCLUS) [3] is a K-Medoids algorithm that
makes a clustering initialization over the full feature space and, besides the number
of desired clusters, requires an additional parameter concerning the average dimen-
sionality of a projective cluster, which is not trivial to set. For this reason, PROCLUS
may fail in detecting projective clusters of very different sizes. Variants of PRO-
CLUS include FINDIT (a Fast and INtelligent subspace clustering algorithm using
DImension voTing) [81], which employs some heuristics to enhance efficiency and
clustering accuracy, and SemiSupervised Projected Clustering (SSPC) [84], which is
able to further enhance accuracy by using domain knowledge in the form of labeled
objects and/or labeled features.

The PreDeCon algorithm proposed in [12] follows a density-based approach, as
it adapts the basic DBSCAN [25] using a specialized subspace distance measure that
captures the subspace of each cluster.
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Soft projective clustering. All above methods provide clustering solutions that are
hard at data clustering level and have unweighted feature-to-cluster assignments.
However, a recent corpus of study has focused on algorithms able to produce soft
data clusterings [56, 17], and/or clusterings having differently weighted feature-to-
cluster assignments [23, 17].

Locally Adaptive Clustering (LAC) [23] performs local feature selection by as-
signing weights to features, and thus enables distance measures to reflect local cor-
relations of data. A parameter h controls the incentive for clustering on more fea-
tures depending on the strength of the local correlation of data. The study proposed
in [17] focuses on a probabilistic modeling of projective clusters and proposes a Fuzzy
Projective Clustering (FPC) algorithm, which can produce overlapping clusters, like
P3C, and can also assign different weights to the subspace features.

Hybrid projective clustering. Hybrid projective clustering involves methods that may
in principle be considered as both projective and subspace clustering approaches.
Most hybrid algorithms follow a density-based approach. Density-based Optimal
Projective Clustering (DOC) [67] greedily discovers projective clusters. It can handle
variable-size clusters and does not require the number of clusters as input parame-
ter; however, it is sensitive to a user-defined parameter required to control the cluster
quality, and assumes that the projective clusters are hypercubes with same side-length
over all features. In [85], MINECLUS is proposed to enhance the efficiency of DOC
based on an optimized adaptation of the frequent pattern tree growth method. The
key idea is to model any input data object as an itemset comprised of the features in
which that object is within a certain distance from a given pivot data object.

Detecting Subspace cluster Hierarchies (DiSH) [2] follows a similar idea as Pre-
DeCon, but uses a hierarchical clustering model which is inspired by the density-
based hierarchical clustering algorithm OPTICS [5].

FIlter REfinement Subspace clustering (FIRES) [46] computes one-dimensional
projective clusters using any clustering technique provided in input by the user. These
one-dimensional projective clusters are then merged by applying a “clustering of
clusters” step. The clusters discovered by FIRES may overlap, but, unlike classic
subspace clustering methods, the algorithm is not able to produce all clusters in all
interesting subspaces.

A crucial issue in subspace clustering is redundancy, since exponentially many
subspace clusters are usually detected in arbitrary projections. The study in [58] deals
with global redundancy removal, by introducing a twofold model of relevance for
subspace clustering, based on interestingness and non-redundancy functions via a
new definition of cluster gain. This relevance model enables a heuristic for detecting
only non-redundant yet possibly overlapping subspace clusters.

Another issue in subspace clustering (related to redundancy) is scalability, since
the commonly adopted Apriori-style search of possible subspaces is exponential in
the number of dimensions. Moreover, density-based clustering methods have to com-
pute the neighborhood around each object in each subspace under consideration, re-
sulting in poor scalability w.r.t. dimensionality as well as database size. The EDSC
algorithm [6] improves the efficiency of density-based clustering using a multistep
filter-and-refine procedure, while guaranteeing lossless pruning of the search space.
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The approach in [59] explicitly focuses on the scalability problem, particularly for
the density-based paradigm. The proposed best-first-way steering of the clustering
ensures a reduction of the search subspace processing by directly finding the inter-
esting subspace clusters, while avoiding the majority of redundant subspaces and
repeated database scans.

The study in [39] has been recently introduced to deal with joining the two prob-
lems of density-based subspace clustering and dense subgraph mining, which can be
useful in several application domains such as social networks and genomics.

2.2 Clustering Ensembles

Clustering ensemble methods are here presented under four main categories: direct
methods, instance-based, cluster-based, and hybrid approaches.

Direct clustering ensembles. Direct clustering ensemble methods are defined accord-
ing to optimization criteria or probabilistic models that involve a direct comparison
between the solutions in the ensemble and any candidate consensus clustering. The
algorithms proposed in [21, 24, 28] explicitly solve the label correspondence prob-
lem to find a correspondence between the cluster labels across the clusterings. The
clustering ensemble problem has been mapped to other well-known problems, such
as correlation clustering [34] and nonnegative matrix factorization (NNMF) [53, 52].
Heuristic search procedures to formulate the consensus clustering have also been de-
veloped as genetic algorithms [32] and multi-ant colony optimization methods [82].

A basic mixture model for clustering ensembles is proposed in [74], where a
certain number of consensus clusters is assumed and a multinomial distribution is
drawn for each consensus cluster and clustering in the ensemble. Model parameters
are estimated through a maximum log-likelihood problem that can be solved by an
EM-like procedure. More recently, model-based approaches to clustering ensembles
have improved over the basic multinomial mixture model by developing Bayesian
models [77, 78], where methods such as collapsed Gibbs sampling and variational
Bayesian inference are used for inference and parameter estimation. Moreover, non-
parametric Bayesian models [79, 80] have been also proposed to avoid requiring the
apriori specification of the size of the consensus clustering.

Instance-based clustering ensembles. Instance-based methods are developed to carry
out a direct comparison between data objects. Most instance-based methods operate
on the co-occurrence or co-association matrix M. For each pair of objects (o′,o′′),
this matrix stores the number of solutions of the ensemble in which o′ and o′′ are
placed in the same cluster, divided by the size of the ensemble. In the Majority Voting
(MV) algorithm [29], M is “cut” at a given threshold, i.e., all objects whose pairwise
entry in M is greater than the threshold are joined in the same cluster. This approach
has been proved to be equivalent to an AHC algorithm with single link metric on M,
cutting the resulting dendrogram according to the given threshold [30].

Other algorithms are based on using M either as a new data matrix [50] or as a
pair-wise distance matrix involved in a specific clustering algorithm. In [34], Expecta-
tion Maximization or AHC with average linkage are employed, whereas the Iterative
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Voting Consensus (IVC) algorithm [64] uses K-Means. In [86], the AHC algorithm
is applied to a pair-wise distance matrix derived from M by taking into account the
statistical “signal” of the clusters in the ensemble.

In [71], the clustering ensemble problem is mapped to a graph/hypergraph parti-
tioning problem. The authors present two instance-based clustering ensemble meth-
ods, namely the Cluster-based Similarity Partitioning Algorithm (CSPA) and the Hy-
perGraph Partitioning Algorithm (HGPA). CSPA induces a weighted graph from M
and partitions it using the well-known graph partitioning algorithm METIS [44].
HGPA builds a hypergraph whose vertices are the data objects and the hyperedges
are given by the clusters of all the clustering solutions in the ensemble; the consensus
clustering is then obtained by partitioning the hypergraph using HMETIS [43].

More recent graph-partitioning-based approaches are proposed in [8, 22]. In [8],
the weight of each edge (o′,o′′) in the induced graph is defined in terms of the size
of the nearest neighbor list shared between the data objects o′ and o′′. In [22], the
Weighted Similarity Partitioning Algorithm (WSPA) is proposed to combine multi-
ple clusterings that result from different runs of the LAC projective clustering algo-
rithm [23].

In [75], the features of the input data are re-defined according to the information
available from the ensemble (e.g., by considering the specific cluster label, for each
clustering of the ensemble) and are involved into EM-like procedures.

Cluster-based clustering ensembles. Cluster-based clustering ensemble approaches
are based on the principle “to cluster clusters”. The key idea is to run a clustering
algorithm on the set of clusters contained in all clustering solutions of the ensemble,
in order to compute a set of meta-clusters. The consensus clustering is finally com-
puted to assign each data object to the meta-cluster that maximizes some assignment
criterion (e.g., majority voting).

The study in [14] proposes a two-stage clustering procedure. In the first stage,
clustering solutions are obtained by multiple runs of the K-Means algorithm. Then,
the output centroids from these clustering solutions are clustered by an additional run
of K-Means, and the resulting meta-centroids are used as initial points for a complete
run of EM or K-Means.

The Meta-CLustering Algorithm (MCLA) [71] builds a graph whose vertices
are the clusters of the various clustering solutions in the ensemble, and each edge
(C ′, C ′′) has a weight equal to the Jaccard similarity coefficient [42] between the
clusters associated to the vertices C ′ and C ′′. The set of meta-clusters is computed by
applying METIS on the graph, whereas the objects are assigned to the meta-clusters
according to a majority voting criterion.

In [13], a MetaCluster Search (MCS) algorithm is formulated as a linear op-
timization problem to compute the optimum set of meta-clusters. The inter-cluster
similarity is defined in terms of the Jaccard coefficient, and the assignment of the
objects to the meta-clusters is accomplished by majority voting.

Hybrid clustering ensembles. Hybrid clustering ensemble methods attempt to com-
bine ideas coming from both instance-based and cluster-based approaches. The ob-
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jective is to build a hybrid bipartite graph whose vertices belong to the sets of objects
and clusters.

The Hybrid Bipartite Graph Formulation (HBGF) algorithm [26] builds a bipar-
tite graph where each edge (o, C) has weight equal to 1, if the object o belongs to the
cluster C, 0 otherwise. The clustering ensemble result is obtained by partitioning the
graph according to standard methods such as METIS, or spectral graph partitioning
algorithms (e.g., [62]). The Weighted Bipartite Partitioning Algorithm (WBPA) [22]
follows the same overall scheme of HBGF, although it extends the range of weight
values from {0, 1} to [0, 1].

Recently, there has been an increasing interest in selecting and weighting the com-
ponents of an ensemble. In particular, the cluster ensemble selection problem [16, 27]
is to select a proper subset of solutions from an ensemble, and the weighted consensus
clustering problem [52, 38] is to automatically determine a proper weight for each
solution in the ensemble. The key motivation for both problems arises from the fact
that selecting a proper subset of clustering solutions (or assigning a proper weight to
each clustering solution) allows for extracting a more accurate consensus clustering
than using the whole ensemble (or the unweighted version of the algorithm).

3 Problem Definition

We present here our formal definition of the problem of projective clustering ensem-
bles (PCE). The objective is to define methods to exploit the information provided by
an ensemble of projective clustering solutions (i.e., projective ensemble) to compute
a projective consensus clustering. The information provided by any projective ensem-
ble is two-fold: on the one hand data are grouped in clusters, and on the other, features
are assigned to clusters. This lies in the following notion of projective cluster.

Definition 1 (projective cluster) Let D be a set of data objects, where each o ∈ D
is an |F|-dimensional point defined over a feature space F . A projective cluster C
defined over D is a pair 〈ΓC ,∆C〉, where

– ΓC denotes the object-based representation of C. It is a |D|-dimensional real-
valued vector whose components ΓC,o ∈ [0, 1], ∀o ∈ D, represent the object-
to-cluster assignment of o to C, i.e., the probability Pr(o|C) that the object o
belongs to C;

– ∆C denotes the feature-based representation of C. It is an |F|-dimensional real-
valued vector whose components ∆C,f ∈ [0, 1], ∀f ∈ F , represent the feature-
to-cluster assignment of the f -th feature to C, i.e., the probability Pr(f |C) that
the feature f is informative for cluster (f belongs to the subspace associated with
C).

ut

Note that the above definition addresses all possible types of projective clusters han-
dled by existing projective clustering algorithms (cf. Sect. 2.1). Moreover, the defi-
nition enables any PCE formulation to satisfy requirements 3) and 4) reported in the
Introduction. In fact, both soft and hard object-to-cluster assignments are taken into
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Table 1 Notation used in this paper

Symbol Description
o data object
D collection of data objects
C projective cluster (set of data objects)
C projective clustering (set of projective clusters)
E projective ensemble (set of projective clusterings)
C∗ projective consensus clustering
K number of clusters in the projective consensus clustering
f feature
F set of features
ΓC object-based representation vector of projective cluster C
ΓC,o object-to-cluster assignment of object o to projective cluster C
∆C feature-based representation vector of projective cluster C
∆C,f feature-to-cluster assignment of feature f to projective cluster C
Λo feature-based representation vector of object o
Λo,f probability that feature f is informative for object o

Ψo, ψo, ψo object-based optimization functions
Ψf , ψf , ψf feature-based optimization functions
Q object- and feature-based optimization function
J extended Jaccard (Tanimoto) similarity coefficient
ρ Pareto ranking function
t population size
I, I numbers of iterations
F1of , F1o, F1f external assessment criteria
F1of , F1o, F1f internal assessment criteria

account—the assignment is hard when ΓC,o ∈ {0, 1} rather than [0, 1], ∀o ∈ D.
Similarly, feature-to-cluster assignments may be unweighted, i.e., ∆C,f = 1, if f is
associated to C, ∆C,f = 0, otherwise; the latter representation is suited for dealing
with the output of projective clustering algorithms that only select the most infor-
mative features for each cluster, without specifying any feature-to-cluster assignment
probability distribution.

Definition 2 (projective clustering solution) Let D be a set of data objects, where
each o ∈ D is defined over a feature space F . A projective clustering solution C for
D is a set of projective clusters such that

∑
C∈C ΓC,o = 1, ∀o ∈ D. ut

According to Def. 1, both objects and features have a probabilistic assignment to any
given projective cluster. Furthermore, when a set of projective clusters forms a pro-
jective clustering solution C = {C1, . . . , CK} according to Def. 2, the assignment of
each object o ∈ D to the various clusters within C is implicitly described by a random
variable. No random variable is instead assigned to the features. The motivation for
this lies in that the events “o belongs to C1”, . . . , “o belongs to CK” are mutually
exclusive and, therefore, represent a valid event space for the random variable associ-
ated to o. The same reasoning does not hold for features. Indeed, any feature f may
naturally be informative for a number of different clusters at the same time, leading
to events that can be in general non-mutually exclusive. Nevertheless, regarding fea-
tures, a choice adopted by many projective clustering methods (such as [23, 17]) is to
force mutual exclusion from a cluster perspective, i.e., requiring

∑
f∈F ∆C,f = 1,

∀C ∈ C. This acts like a [0, 1]-normalization on the feature-based representation vec-
tor of any projective cluster, allowing the formulas to be more readable and/or easier
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to express. It is easy to see that Def. 2 complies with the latter feature-to-cluster
assignment model as well, thus still guaranteeing full generality.

Definition 3 (projective ensemble) Given a set D of data objects, a projective en-
semble E defined over D is a set of projective clustering solutions for D. ut

We observe that Def. 3 satisfies the first two requirements needed for developing gen-
eral PCE methods, as described in the Introduction. In fact, no information about the
projective ensemble generation strategy (algorithms and/or setups), nor original fea-
ture values of the objects within D are provided along with the projective ensemble.
Moreover, each clustering solution in E may contain in general a different number of
clusters.

4 Projective Clustering Ensembles Formulations

4.1 Two-objective PCE

The traditional clustering ensemble problem is typically formulated as a special ver-
sion of the median partition problem, which is defined as follows [9]: given a number
of partitions (clusterings) defined over the same set of objects and a function that
measures the distance between clusterings, find a (new) clustering that minimizes the
distance from all the input clusterings. Formally, given an ensemble ECE , the con-
sensus clustering is derived by solving the following:

argmin
CCE

Ψ(CCE , ECE) (1)

where Ψ(CCE , ECE) =
∑
ĈCE ∈ ECE ψ(CCE , ĈCE), and ψ is a distance function be-

tween clusterings.
Within this view, a natural way to formulate PCE is to extend (1) by taking into

account that any optimal projective consensus clustering C∗ for PCE should meet
two different requirements, rather than the only one of standard clustering ensembles.
Such requirements refer to the object-to-cluster and feature-to-cluster assignments of
the solutions within the input projective ensemble E , respectively. Thus, in order to
capture both these aspects, PCE can be formulated as a two-objective optimization
problem:

C∗ = argmin
C
{Ψo(C, E), Ψf (C, E)} (2)

where Ψo and Ψf are optimization functions that account for the object- and the
feature-to-cluster assignments of the projective clusterings in E , respectively. Note
that the only constraint in the above formulation is that C must be a well-defined
projective clustering solution, as given in Def. 2.

Similarly to the function Ψ in standard clustering ensembles, the functions Ψo and
Ψf can be defined using a clustering-based approach, which involves a direct com-
parison with the projective clustering solutions of the projective ensemble. Formally,
we have:

Ψo(C, E) =
∑
Ĉ∈E

ψo(C, Ĉ) (3)
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Ψf (C, E) =
∑
Ĉ∈E

ψf (C, Ĉ) (4)

where ψo (respectively, ψf ) is a function that measures the distance between any
two projective clustering solutions in terms of their corresponding object-to-cluster
assignment (respectively, feature-to-cluster assignments).

In principle, ψo and ψf might be defined by resorting to any well-known external
criterion for comparing clusterings (see, e.g., [55, 66]), and adapting such criteria in
order to focus on either the object-based or feature-based representation of the pro-
jective clusters within the projective clusterings to be compared. In this respect, as
both hard and soft object- and feature-to-cluster assignments should be taken into ac-
count, a reasonable choice would be the well-founded clustering error measure. This
measure is defined as the scaled sum of the non-diagonal elements of the so-called
confusion matrix (the matrix storing the pairwise distances between the clusters of the
two clusterings to be compared), minimized over all possible permutations of rows
and columns. The fastest method known for computing clustering error is the Hungar-
ian algorithm [49], which has a complexity that is cubic in the sizes of the clusterings
to be compared. However, due to its computational cost, the algorithm does not scale
well for many applications. We therefore adopt here a slightly modified version of the
clustering error measure, which has the advantage of being quadratic w.r.t. the sizes
of the clusterings to be compared. In particular, we define ψo and ψf as follows:

ψo(C′, C′′) =
1

2

(
ψo(C′, C′′) + ψo(C′′, C′)

)
(5)

ψf (C′, C′′) =
1

2

(
ψf (C′, C′′) + ψf (C′′, C′)

)
(6)

where

ψo (C′, C′′) =
1

|C′|
∑
C′∈C′

(
1− max

C′′∈C′′
J
(
ΓC′ ,ΓC′′

))
ψf (C′, C′′) =

1

|C′|
∑
C′∈C′

(
1− max

C′′∈C′′
J
(
∆C′ ,∆C′′

))
with J

(
u,v

)
=
(
u ·v

)
/
(
‖u‖2+‖v‖2−u ·v

)
∈ [0, 1] denoting the extended Jaccard

similarity coefficient between any two real-valued vectors u and v. The extended
Jaccard coefficient J is one of the most used distance measures between real-valued
vectors, being in general a trade-off solution between Euclidean and Cosine measures
in terms of scale/translation invariance [72]; moreover, it has a fixed-range codomain,
[0, 1], as required in the proposed two-objective PCE formulation in order to make the
values of the two objective functions Ψo and Ψf scale-independent w.r.t. each other.

Defining ψo and ψf according to (5) and (6) allows for overcoming the complex-
ity of computing clustering error, as both (5) and (6) can be computed inO(|C′| |C′′|).
As a side effect, ψo and ψf are asymmetric; this essentially depends on the “cluster
alignment” between C′ and C′′, which may not be one-to-one unlike classic cluster-
ing error measure; indeed, a cluster of C′′ could be mapped to multiple clusters of C′,
implying that some clusters of C′′ could not be assigned at all.
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The MOEA-PCE algorithm. As stated previously, each of the two objectives of the
optimization problem reported in (2) is close to the classic formulation employed by
standard clustering ensembles. Thus, both the objectives refer to the median partition
problem, which has been proved to be NP-hard in [48]. Due to the hardness of the
problem at hand, we focus on the development of heuristics in order to compute
accurate approximations. The definition of such heuristics would be easier if the two
objectives were not conflicting; in that case, in fact, the two-objectives could be easily
collapsed into a single one. Unfortunately, the problem in (2) involves two conflicting
objectives, as shown next.

Proposition 1 The two objective functions Ψo and Ψf of the problem defined in (2)
are conflicting w.r.t. one another. ut

Traditional optimization methods are not good choices for multi-objective prob-
lems whose objectives are conflicting. For example, a conventional approach to solv-
ing this kind of problems consists in defining a single-objective problem whose op-
timization function is computed as a weighted linear combination of the functions
in the original problem. Unfortunately, this approach has several drawbacks [18]: it
mixes non-commensurable objectives, involves a hard setting of the weights to assign
to each function, and requires prior knowledge of the application domain.

A more refined approach that has been recognized as particularly appropriate in
providing valid solutions for the problem at hand is given by Pareto-based Multi-
Objective Evolutionary Algorithms (MOEAs) [18]. This class of methods is able to
solve a multi-objective problem while maintaining the underlying multi-objective
structure of the given problem, i.e., without combining the various objective func-
tions into a single one.

Within this view, we define the MOEA-based Projective Clustering Ensembles
(MOEA-PCE) algorithm. In particular, we resort to the Nondominated Sorting Ge-
netic Algorithm-II (NSGA-II) [19], whose multi-objective quality assessment strat-
egy is in part based on the notion of Pareto-ranking. In the following we provide the
necessary definitions.

Definition 4 (Domination) Let P be a multi-objective optimization problem of the
form: x∗ = argminx{f1(x), . . . , fn(x)}. Let x′ and x′′ be two candidate solutions of
P . x′ dominates x′′ (x′ ≺ x′′) if and only if fi(x′) ≤ fi(x

′′), ∀i ∈ {1, . . . , n}, and
∃j ∈ {1, . . . , n} s.t. fj(x′) < fj(x

′′). ut

Definition 5 (Pareto-nondominated) Let P be a multi-objective optimization prob-
lem of the form: x∗ = argminx{f1(x), . . . , fn(x)}. Let S be a population of individ-
uals for P , i.e., a set of candidate solutions of P . S∗P ⊆ S is a Pareto-nondominated
solution set of P w.r.t. S if and only if x ⊀ x∗, ∀x ∈ S, ∀x∗ ∈ S∗P . ut

Definition 6 (Pareto-ranking) Let P be a multi-objective optimization problem of
the form: x∗ = argminx{f1(x), . . . , fn(x)}. Let S be a population of individuals for
P . The Pareto-ranking function ρ : S → N+ for P is defined recursively as follows.
Let S1 = S. For any given set of individuals Si, the Pareto rank of any x belonging
to the maximal Pareto-nondominated solution set S∗P,i of P w.r.t. Si is defined to be
i (i.e., ρ(x) = i, ∀x ∈ S∗P,i), and Si+1 = Si \ S∗P,i. ut
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Algorithm 1 MOEA-PCE

Input: A projective ensemble E defined over a setD of data objects; the numberK of clusters in the output projective
consensus clusterings; the population size t; the maximum number I of iterations

Output: A projective consensus clustering C∗

1: S ← populationRandomGen(E, t,K)
2: it← 1
3: repeat
4: ρ← computeParetoRanking(S) {cf. Def. 6}
5: 〈S′,S′′〉 ← 〈Š′ ⊂ S, Š′′ ⊂ S〉 : |Š′| = |S|/2, |Š′′| = |S|/2, Š′ ∪ Š′′ = S, ρ(x′) ≤

ρ(x′′), ∀x′ ∈ Š′, x′′ ∈ Š′′
6: S′CM ← crossoverAndMutation(S′)
7: S ← S′ ∪ S′CM
8: it← it+ 1
9: until it = I

10: ρ← computeParetoRanking(S)
11: S∗ ← {x′ ∈ S : ρ(x′) ≤ ρ(x′′), ∀x′′ ∈ S, x′′ 6= x′}
12: select C∗ from S∗

Let us informally explain Defs. 4-6. Essentially, Def. 4 states that a solution x′

dominates any other solution x′′ if and only if the value of x′ is strictly lower than that
of x′′ according to at least one objective function, while the two values are at most
equal to each other according to the remaining functions. Given a set of solutions,
the corresponding Pareto-nondominated subset (Def. 5) is composed by all individu-
als that are not dominated by any other solution in the given set. The Pareto-ranking
function (Def. 6) aims to assign a “score” (i.e., a rank in the form of a positive inte-
ger) to each solution of any given population S. In particular, all the nondominated
solutions in S (denoted by S∗P,1) have rank 1, and the rank of the remaining solutions
is recursively assigned by considering the nondominated solutions that do not have
a rank yet. For instance, all the nondominated solutions in S \ S∗P,1 have rank 2 and
form the set S∗P,2, all the nondominated solutions in (S \S∗P,1)\S∗P,2 have rank 3 and
form the set S∗P,3, and so on until a rank is assigned to all the solutions in S.

The Pareto-ranking function ρ is exploited by the proposed MOEA-PCE algo-
rithm (Algorithm 1) to perform the steps of selection, crossover, and mutation. The
algorithm starts by randomly generating an initial population (set of candidate so-
lutions) S (Line 1), and proceeds by performing the main loop until a maximum
number I of iterations has been reached (Lines 3-9). At each iteration, the Pareto-
ranking function ρ, defined w.r.t. the current population S, is computed according to
Def. 6, where the problem denoted with P is the one reported in (2) (Line 4). The
ranking function ρ is computed by following the procedure described in [19]. The ρ
values of each candidate solution in S are then exploited for sorting S, and partition-
ing it into two equally-sized subsets, i.e., S ′ and S ′′, such that each candidate in S ′
has a ρ value not greater than any candidate in S ′′ (Line 5). The subset S ′ undergoes
a crossover-and-mutation step, which is performed by adding random Gaussian noise
to each candidate solution in S ′ [70] (Line 6). The result of this step is the “offspring”
set S ′CM of new candidates, which, together with S ′, form the new population (Line
7). Finally, the Pareto-optimal solution set S∗ (i.e., the set of the output projective
consensus clusterings) is derived from the population S computed at the last iteration
of the algorithm (Line 11). From this set, one Pareto-optimal solution is eventually
selected to provide a single projective consensus clustering (Line 12).
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4.2 Single-objective PCE

Pareto-based MOEAs provide a valuable solution to the proposed two-objective PCE
formulation in terms of effectiveness and adaptability to the multi-objective optimiza-
tion context. Nevertheless, MOEAs typically incur a number of intrinsic issues:

1) Inefficiency, mostly due to the fact that the number I of iterations needed for
achieving good solutions is usually large;

2) Difficult setting for the parameters I and t (population size), for which no guid-
ance or prior knowledge is available;

3) Difficult interpretation of the results. The algorithm outputs a set of projective
consensus clusterings and, although one of such solutions can be always selected
(e.g., randomly, as each one is however Pareto-optimal), the task of selection
could in general be non-trivial.

As stated in the previous section, overcoming the above drawbacks by combining
the two objective functions into a single one is not feasible. Therefore, the solution
here adopted aims to provide an alternative formulation to PCE in terms of a single-
objective function Q(C, E), whose details are given next.

4.2.1 Deriving the Single-objective PCE Optimization Function

A key notion for the definition of Q is the feature-based representation of any data
object o, which is provided next.

Definition 7 (feature-based representation) Let E be a projective ensemble defined
over a set D of data objects, where each o ∈ D is described by a set F of features.
Moreover, letAo,f denote the event “feature f is informative for o w.r.t. the projective
ensemble E”, ∀o ∈ D, ∀f ∈ F . The feature-based representation of any object
o ∈ D is an |F|-dimensional probability vector Λo, where each component Λo,f

corresponds to the probability Pr(Ao,f |E) of the event Ao,f given the information
available from the projective ensemble E . ut

Proposition 2 In reference to the expression Λo,f and the event Ao,f introduced in
Def. 7, it holds that:

Λo,f =
1

|E|
∑
Ĉ∈E

∑
Ĉ∈C

ΓĈ,o ∆Ĉ,f (7)

ut

The single-objective function Q is defined as an error criterion to be minimized
that accounts for both the object- and feature-based representations of the solutions
in the projective ensemble. To this end, for each cluster C within any candidate pro-
jective consensus clustering C, Q should fulfill the following requirements:

1) Q is such that the object-to-cluster assignment ΓC,o of any object o to C is di-
rectly proportional to how well o complies with the information from the projec-
tive ensemble about the object-to-cluster assignments {ΓĈ,o ′ | Ĉ ∈ Ĉ, Ĉ ∈ E} of
the other objects o ′ 6= o within C;
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2) larger values of Q correspond to a lower agreement of the feature-based repre-
sentation ∆C of C with the information from the projective ensemble about the
feature-based representations Λo of the objects o within C.

To satisfy the above requirements, we first take into account the error, denoted as
EC,o, between the feature-based representation ∆C of cluster C and the feature-
based representation Λo of any object o. This error can be trivially defined by ap-
plying any distance measure to the vectors ∆C and Λo. Therefore, choosing the
squared Euclidean distance for its simplicity, it holds that EC,o = ‖∆C − Λo‖2 =∑
f∈F (∆C,f − Λo,f )

2. EC,o refers to the error of C w.r.t. only one object o. To
compute the overall error EC , it is sufficient to sum up EC,o over all objects,
and weight each individual EC,o by the probability ΓC,o that o belongs to C, i.e.,
EC =

∑
o∈D ΓC,o EC,o =

∑
o∈D ΓC,o

∑
f∈F (∆C,f − Λo,f )

2.
It is easy to see that EC gives a measure of how well the feature-based represen-

tation ∆C of the cluster C in the candidate projective consensus clustering complies
with the feature-based representations Λo of all objects o within C, according to
the information from the projective ensemble. EC hence meets the aforementioned
requirement 2). Moreover, it is straightforward to see that EC implicitly measures
how the feature-based representations Λo, Λo ′ of any two objects o, o ′ within C
are close to each other. Since Proposition 3 reported next shows that the latter condi-
tion is strictly related to the closeness of o to o ′ also in terms of their corresponding
object-to-cluster assignments, thus EC fulfills requirement 1) as well.

Proposition 3 Let E be a projective ensemble defined over a set D of data ob-
jects, where each o ∈ D is described by a set F of features. Given any two ob-
jects o,o ′ ∈ D, let do,o ′ be the squared Euclidean distance between the object-to-
cluster assignments of o and o ′ to the various clusters of all the solutions in E , i.e.,
do,o ′ =

∑
Ĉ∈E

∑
Ĉ∈Ĉ(ΓĈ,o − ΓĈ,o ′)2. It holds that the squared Euclidean distance

‖Λo −Λo ′‖2 between the feature-based representations of o and o ′ is directly pro-
portional to do,o ′ . ut

In summary, EC puts in relation both the object- and feature-to-cluster assign-
ments of any cluster C within the candidate projective consensus clustering C with
the information available from the projective ensemble. Summing up EC over all
clusters in C provides the desired error criterion to be used in the resulting objective
function Q, as it satisfies both the requirements previously discussed.

According to the above reasoning, we introduce the following single-objective
PCE formulation:

C∗ = argmin
C

Q(C, E) (8)

s.t . ∑
C∈C

ΓC,o = 1, ∀o ∈ D (9)

ΓC,o ≥ 0, ∆C,f ≥ 0, ∆C,f ≤ 1, ∀C, ∀o,∀f (10)

where
Q(C, E) =

∑
C∈C

∑
o∈D

ΓαC,o
∑
f∈F

(∆C,f − Λo,f )
2 (11)
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and α is a positive integer whose rationale is as follows. Denoting by P the optimiza-
tion problem defined in (8)-(10), if we set α = 1 both the objective function and the
constraints of P become linear w.r.t. ΓC,o. This would be sufficient for the fundamen-
tal property of linear programming, which states that the optimal solution of a linear
programming problem is at a vertex of the hyper-polygon of the feasible region, to
apply for P . In this case, the optimal solution for P would have hard object-to-cluster
assignments, i.e., ΓC,o ∈ {0, 1}. Thus, in order to have more general solutions (i.e.,
solutions whose object-to-cluster assignments range within [0, 1]), we require the pa-
rameter α to be a positive integer greater than 1. The value of α controls the softness
of the optimal solutions of P , i.e., the larger α is, the higher the sparsity of the ΓC,o
values is, and vice versa.

4.2.2 The EM-PCE Algorithm

The optimization problem defined in (8)-(10) is close to a formulation of the tra-
ditional clustering problem based on a Sum of Squared Error (SSE) minimization.
Thus, such a problem can be easily proved to be NP-hard. We provide a heuristic
solution by defining a novel procedure inspired by the popular Expectation Maxi-
mization (EM) algorithm [20].

The proposed algorithm, called EM-based Projective Clustering Ensembles (EM-
PCE) (Alg. 2), consists of two main EM-like steps (i.e., expectation step and max-
imization step), which are iteratively repeated until a convergence criterion is met.
Function Q (11) is used to find the optimal values for ΓC,o (∆C,f , respectively),
while keeping ∆C,f (ΓC,o, respectively) fixed. The optimal solutions for ΓC,o and
∆C,f (∀C, ∀o, ∀f ) are given by the following equations:

Γ ∗C,o =

[∑
C′∈C

(
XC,o

XC′,o

) 1
α−1

]−1

(12)

∆∗C,f =
ZC,f
YC

(13)

where
XC,o =

∑
f∈F

(∆C,f − Λo,f )
2 (14)

YC =
∑
o∈D

ΓαC,o (15)

ZC,f =
∑
o∈D

ΓαC,o Λo,f (16)

In the following we prove that (i) (12) and (13) provide the optimal solution of the
problem P defined in (8)-(10), where either ∆C,f or ΓC,o are kept fixed, and (ii) the
convergence of Alg. 2. All the following results refer to a set D of data objects, a set
F of features, a candidate projective clustering solution C, and a projective ensemble
E .
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Algorithm 2 EM-PCE

Input: A projective ensemble E ; the numberK of clusters in the output projective consensus clustering;
Output: the projective consensus clustering C∗

1: C∗ ← randomGen(E, K)
2: repeat
3: for all C∗ ∈ C∗ do
4: compute ΓC∗ according to (12)
5: compute∆C∗ according to (13)
6: end for
7: until convergence

Theorem 1 For the problem P defined in (8)-(10), it holds that:

1) Given the current values for ∆C,f , (12) computes the optimal Γ ∗C,o , ∀C, ∀o
2) Given the current values for ΓC,o, (13) computes the optimal ∆∗C,f , ∀C, ∀f

ut

Theorem 2 The EM-PCE algorithm (Alg. 2) converges to a local minimum of the
function Q defined in (11) in a finite number of steps. ut

4.3 Complexity Analysis

We now discuss the computational complexity of the proposed MOEA-PCE (Alg. 1)
and EM-PCE (Alg. 2) algorithms; such complexities are summarized in Table 2. We
are given: a setD of data objects, each one defined over a feature spaceF , a projective
ensemble E defined over D, a positive integer K representing the number of clusters
in the output projective consensus clustering, and the size t of the population (for
MOEA-PCE). We also assume that the number of clusters of each solution in E is
bounded by O(K).

MOEA-PCE. The costs of the various steps of MOEA-PCE algorithm (Alg. 1) are
summarized as follows:

– the random initialization step (Line 1) is O(t K (|D|+ |F|));
– the computeParetoRanking function (Line 4) has two steps: (i) the computation

of the values of the functions Ψo (cf. (3)) and Ψf (cf. (4)), for each of the t new
individuals in S, which costs O(t K2 |E| (|D|+ |F|)), and (ii) the computation
of the ρ values for S, which is performed in O(t2), according to the procedure
described in [19]. Therefore, since t is O(|E|), the total cost of computePare-
toRanking is O(t K2 |E| (|D|+ |F|));

– the partitioning of S into the subsets S ′ and S ′′ (Line 5) costs O(t log t);
– the crossover & mutation operations (Line 6) are performed in
O(t K (|D|+ |F|));

– the computation of the set S∗ and the output C∗ (Lines 10-11 and 12) costs
O(t K2 |E| (|D|+ |F|)) and O(t), respectively.

Since the steps of the main loop (Lines 3-9) are repeated I times, MOEA-PCE has
an overall complexity of O(I t K2 |E| (|D|+ |F|)).
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Table 2 Computational complexities of the proposed algorithms

MOEA-PCE EM-PCE
offline — O(K |E| |D| |F|)
online O(I t K2 |E| (|D|+ |F|)) O(I K |D| |F|)
total O(I t K2 |E| (|D|+ |F|)) O(K |E| |D| |F|)

We point out that each step of MOEA-PCE is performed online, for each run of
the algorithm, in case of a multi-run execution.

EM-PCE. It consists of two phases (cf. Alg. 2): an offline phase, with operations to
be executed only once in case of multi-run executions, and an online phase, whose
operations are repeated for each iteration of the algorithm, until convergence. Let us
analyze both phases in detail.

– Offline phase: it computes (7) (i.e., Λo,f =
∑
Ĉ∈E

∑
Ĉ∈Ĉ ΓĈ,o ∆Ĉ,f ), ∀o, ∀f at

a total cost of O(K |E| |D| |F|);
– Online: it computes (12) and (13), which require in turn the computation

of XC,o =
∑
f∈F (∆C,f − Λo,f )

2, YC =
∑

o∈D Γ
α

C,o, and ZC,f =∑
o∈D Γ

α

C,o Λo,f (cf. (14)-(16)). The individualXC,o, YC , andZC,f takeO(|F|),
O(|D|), and O(|D|), respectively, as the Λo,f terms values are already available
from the offline phase. Since these terms must be computed ∀C, ∀o (XC,o), ∀C
(YC), and ∀C, ∀f (ZC,f ), the total cost of the online phase is O(2 K |D| |F| +
K |D|), i.e., O(K |D| |F|).

The online steps are repeated I times, where I is the number of iterations needed
for convergence, where typically I � I (i.e., the number of iterations I required for
EM-PCE to converge is typically much smaller than the number of iterations I needed
by MOEA-PCE). In conclusion, the overall computational complexity of EM-PCE is
O(K |D| |F| (I + |E|)), i.e., O(K |E| |D| |F|), as typically I is O(|E|).

Interpretation of the complexity results. To analyze in detail the computational costs
of the proposed MOEA-PCE and EM-PCE algorithms, we interpret the (total) com-
plexity results reported in Table 2. The relative complexity “gap” of MOEA-PCE
w.r.t. EM-PCE is defined as the ratio between the corresponding complexities. Not-
ing that, among the parameters used for expressing the computational complexities,
|D|, |F| and K vary in accordance with the selected dataset, whereas I and t do not,
we are interested in expressing such a gap right in terms of |D|, |F| andK; hence, this
gap is equal to O(r(|D|, |F|,K)), where r is a function of |D|, |F| and K expressed
as:

r(|D|, |F|,K) =
I t K (|D|+ |F|)

|D| |F|

Let us analyze the conditions under which r(|D|, |F|) is greater than one, i.e., when
EM-PCE is less expensive than MOEA-PCE.

Proposition 4 It holds that r(|D|, |F|) > 1 if (|D|+ |F|) /K < 4 I t. ut
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Table 3 Datasets used in the experiments

dataset objects features classes
Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Multiple-Features 2,000 585 10
Segmentation 2,310 19 7
Abalone 4,124 7 17
Waveform 5,000 40 3
Letter 7,648 16 10
Isolet 7,797 617 26
Gisette 13,500 5,000 2
p53-Mutants 300 5,409 2
Amazon 120 10,000 4
Arcene 200 10,000 2
Shapes 160 1,614 9
Tracedata 200 275 4
ControlChart 600 60 6
Twopat 800 128 4
N30 1,356 20 8
D75 1,365 75 7
S2500 2,262 20 8

Proposition 4 states that EM-PCE is less expensive than MOEA-PCE when the
ratio (|D|+ |F|) /K is below 4 I t K. Thus, the smaller the sum |D| + |F| and/or
the larger K is, the more efficient EM-PCE w.r.t. MOEA-PCE is. However, it can
be noted that the condition (|D|+ |F|) /K < 4 I t K is true in a large number
of real cases. As an example, in fact, considering the numerical values of I and t
employed in our experiments (cf. Sect. 5), i.e., I = 200, t = 60, and varying K
within {8, . . . , 26} (i.e., the range bounded by the average and the maximum number
of clusters over all datasets considered in our experiments), it results that: |D|+ |F|
should be upper bounded by a value within the range [384, 000, . . . , 1, 248, 000] to
have r(|D|, |F|,K) > 1. This condition is satisfied in many real cases, making EM-
PCE less expensive than MOEA-PCE in practice. Nevertheless, for huge datasets, it
could happen for EM-PCE to be outperformed by MOEA-PCE.

5 Experimental Evaluation

Our experimental evaluation was aimed to assess accuracy and efficiency of the pro-
jective consensus clusterings obtained by the proposed MOEA-PCE and EM-PCE al-
gorithms. In the following, we introduce the evaluation methodology which includes
the selected datasets, the strategy used for generating the projective ensembles, the
setup of the proposed algorithms, the measures to assess the quality of the projective
consensus clusterings, and the baselines adopted to validate the results of the pro-
posed methods. Next, we present and discuss experimental results obtained on the
evaluation datasets, and finally conclude this section with a real-life case study that
demonstrates the applicability of our PCE approach.
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5.1 Evaluation Methodology

5.1.1 Datasets

We selected 22 publicly available datasets having different characteristics in terms of
number of objects, features and classes, which are summarized in Table 3. A brief
description for each dataset is given next.

– Fifteen datasets from the UCI Machine Learning Repository [7], namely Iris,
Wine, Glass, Ecoli, Yeast, Multiple-Features, Segmentation, Abalone,
Waveform, Letter, Isolet, Gisette, p53-Mutants, Amazon, and Arcene. Iris
refers to measurements on different iris plants. Wine represents results of a chem-
ical analysis of Italian wines derived from three different cultivars. Glass con-
tains glass instances that are described by their chemical components. Ecoli con-
tains data on the Escherichia Coli bacterium, which are identified with values
coming from different analyses. Multiple-Features concerns binary images rep-
resenting handwritten digits (0-9) extracted from a collection of Dutch utility
maps. Yeast objects describe the main features and the localization of various
proteins. Segmentation represents objects that were randomly drawn from a
database of seven outdoor images; the images (3x3 regions) were hand-segmented
to create a classification for each pixel. Abalone is about different types of
abalone shells. Waveform contains data synthetically generated as a combination
of two among three “base” waves. Letter contains character images correspond-
ing to the capital letters in the English alphabet. Isolet contains recording of the
name of each letter of the alphabet spoken by several subjects. Gisette is about
the handwritten digit recognition problem of separating the highly confusible dig-
its ‘4’ and ‘9’. p53-Mutants concerns biophysical models of mutant p53 proteins
and yields features which can be used to predict p53 transcriptional activity. Ama-
zon dataset is derived from the customers’ reviews in Amazon Commerce Web-
site for authorship identification. Arcene is a mass-spectrometry dataset where
the features indicate the abundance of proteins in human sera having a given mass
value.

– Four time-series datasets from the UCR Time Series Classification/Clustering
Page [45], namely Shapes, Tracedata, ControlChart, and Twopat. Shapes
contains time series derived from shapes of nine different objects, i.e., bone, cup,
device, fork, glass, hand, pencil, rabbit and tool. Tracedata simulates signals rep-
resenting instrumentation failures. ControlChart represents synthetically gener-
ated control charts that are classified into one of the following: normal, cyclic,
increasing trend, decreasing trend, upward shift, and downward shift. Twopat in-
cludes time series generated combining two different patterns (upward step and
downward step); these patterns are used to define the classes down-down, up-
down, down-up, and up-up.

– Three synthetically generated datasets, which were selected from [60, 61]. Three
categories, namely dimscale, dbsizescale, and noisescale, were originally used
in [60] for testing the scalability w.r.t. dataset size (dbsizescale), dimensional-
ity (dimscale), and noise (noisescale), respectively. We selected one dataset for
each category, denoted as S2500 for dbsizescale, D75 for dimscale, and N30 for
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noisescale. As such datasets are synthetically generated, the natural subspaces
assigned to the various groups of data objects are known. Moreover, since the
datasets are originally provided in such a way that the corresponding clusters may
overlap, we selected for each dataset the maximal subset of data objects forming a
partition and the corresponding natural subspace for each cluster in the partition.

5.1.2 Projective Ensemble Generation

We adopted a basic strategy for projective ensemble generation, which consists in se-
lecting a (projective) clustering algorithm and varying the parameter(s) of that algo-
rithm in order to guarantee the diversity of the solutions within the projective ensem-
ble. We would like to point out that we were not interested in comparing projective
clustering algorithms and assessing the impact of their performance on projective en-
semble generation, since generating projective ensembles with the highest quality is
not a goal of this work; nevertheless, we resorted to a state-of-the-art algorithm, LAC,
which has been experimentally proved as very effective in the context of projective
clustering [23]. The diversity of the projective clustering solutions was ensured by
randomly choosing the initial centroids and varying the parameter h (cf. Sect. 2).
LAC yields projective clusterings that have hard object-to-cluster assignments and
have weighted feature-to-cluster assignments. Therefore, in order to test the ability
of the proposed algorithms to also deal with soft clustering solutions and with solu-
tions having unweighted feature-to-cluster assignments, we generated each projective
ensemble E as a composition of four equally-sized subsets, denoted as E1, E2, E3, and
E4 and defined as follows:

– E1 is comprised of solutions that have hard object-to-cluster assignments and
weighted feature-to-cluster assignments, i.e., solutions obtained by standard
LAC;

– E2 is comprised of solutions that have hard object-to-cluster assignments and
unweighted feature-to-cluster assignments. Starting from a LAC solution C de-
fined over a set D of data objects and a set F of features, a projective clus-
tering C′ having unweighted feature-to-cluster assignments is derived such that
∆C′,f = I

[
∆C′,f ≥ |F|−1

∑
f ′∈F ∆C′,f ′

]
, ∀C ′ ∈ C′, ∀f ∈ F , where I[A] is

the indicator function, which is equal to 1 when the event A is true, 0 otherwise;
– E3 is comprised of solutions that have soft object-to-cluster assignments and

weighted feature-to-cluster assignments. Starting from a LAC solution C defined
over a setD of data objects and a set F of features, a soft projective clustering C′′
is derived by computing the ΓC′′,o values (∀C ′′ ∈ C′′, ∀o ∈ D), proportionally
to the distance of o from the centroids C

′′
of the clusters C ′′:

ΓC′′,o =

∑
f∈F

(
of − C

′′
f

)2

∑
C∈C′′

∑
f∈F

(
of − Cf

)2
where the f -th feature Cf of the centroid of any cluster C is defined as Cf =
|C|−1

∑
o∈C of .
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– E4 is comprised of solutions that have soft object-to-cluster assignments and un-
weighted feature-to-cluster assignments. The solutions are derived from standard
LAC solutions according to the methods employed for generating E2 and E3, re-
spectively.

For each dataset, we generated 10 different projective ensembles; all results we
present in the following refer to averages over these projective ensembles.

Unless otherwise specified, all experiments refer to the aforementioned ensemble
generation strategy. Nevertheless, in order to analyze more deeply the performance
w.r.t. the properties of the input ensemble, we also carried out a study varying other
aspects in ensemble generation, such as the projective clustering method used for
deriving the ensemble solutions and/or the number of output clusters. We report on
this study at the end of Sect. 5.2.1.

5.1.3 Assessment Criteria

We assessed the quality of a projective consensus clustering C using both external and
internal cluster validity approaches: the former is based on the similarity of C w.r.t. a
reference classification, whereas the latter is based on the average similarity w.r.t. the
solutions in the input projective ensemble E .

Similarity w.r.t. the reference classification (external evaluation). This evaluation
stage exploits the availability of a reference classification, denoted as C̃, for any given
dataset D. The object-to-cluster assignments, i.e., the ΓC̃,o values, ∀C̃ ∈ C̃, ∀o ∈
D, are specified in a hard way. The ∆C̃,f feature-to-cluster assignments are instead
defined according to the following approaches:

– For the synthetic datasets N30, D75, and S2500, which already provide informa-
tion about the subspaces assigned to each group of objects identified by the ref-
erence classification, these subspaces are directly employed to define unweighted
∆C̃,f feature-to-cluster assignments in C̃.

– For all remaining datasets, the∆C̃,f values are derived by applying the procedure

suggested in [23] to the groups of objects identified by C̃. Formally, given the
ΓC̃,o values (∀C̃ ∈ C̃, ∀o ∈ D) originally provided along with the reference

classification C̃, the ∆C̃,f values are computed as:

∆C̃,f =
exp

(
−U(C̃, f)/h

)
∑
f ′∈F exp

(
−U(C̃, f ′)/h

)
where the LAC parameter h is set equal to 0.2 and:

U(C̃, f)=

(∑
o∈D

ΓC̃,o

)−1∑
o∈D

ΓC̃,o
(
Cf − of

)2
Cf =

(∑
o∈D

ΓC̃,o

)−1∑
o∈D

ΓC̃,o×of

In order to compute similarity between a projective consensus clustering C and
a reference classification C̃, we resort to the popular F1-measure [76]. This measure
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has been previously used to evaluate subspace/projective clustering (e.g., [60]) and
also been subject of examination in [40] for developing a (symmetric) F1-measure
able to fulfill a number of desiderata specifically for subspace clustering, named as
object, subspace, redundancy, and identification awareness. Here we provide a defi-
nition of F1-measure that enables a comparison between projective clustering having
soft object/feature-to-cluster assignments. Given a projective cluster C ∈ C, the pre-
cision P (C) and the recall R(C) are defined as:

P (C) =
maxC̃∈C̃ overlap(C̃, C)

size(C)
R(C) =

maxC̃∈C̃ overlap(C̃, C)

size(argmaxC̃∈C̃ overlap(C̃, C))

the F1-measure is defined as:

F1(C̃, C) = 1

|C|
∑
C∈C

2 P (C) R(C)

P (C) +R(C)

F1-measure ranges within [0, 1], where higher values indicate more accurate pro-
jective consensus clusterings. The overlap(·, ·) and size(·) functions, which quantify
the overlap degree between any two projective clusters and the size of any projec-
tive cluster, respectively, are defined according to a comparison performed among
the various projective clusters. We considered all possible comparisons, i.e., object-
based (o), feature-based (f), and object & feature-based (of), which respectively ac-
count for the object-based representations only of the projective clusters to be com-
pared, the feature-based representation only, or both. We define ad-hoc versions of
the overlap(·, ·) and size(·) functions to handle all three types of comparison:

– object-based (measure F1o): overlap(C ′, C ′′) =
∑

o∈D ΓC′,o ΓC′′,o,
size(C) =

∑
o∈D ΓC,o

– feature-based (measure F1f ): overlap(C ′, C ′′) =
∑
f∈F ∆C′,f ∆C′′,f ,

size(C) =
∑
f∈F ∆C,f

– object & feature-based (measure F1of ): overlap(C ′, C ′′) =(∑
o∈D ΓC′,o ΓC′′,o

) (∑
f∈F ∆C′,f ∆C′′,f

)
, size(C) =(∑

o∈D ΓC,o
) (∑

f∈F ∆C,f

)
Similarity w.r.t. the projective ensemble solutions (internal evaluation). Any

valid projective consensus clustering C should comply with the information available
from the input projective ensemble E . In this respect, we carried out an evaluation
stage to measure the average similarity between any projective consensus clustering
and the solutions within E . We define the following object & feature-based measure
F1of (object-based F1o and feature-based F1f are defined similarly):

F1of (C) =
1

|E|
∑
Ĉ∈E

max{F1(C, Ĉ), F1(Ĉ, C)}

Clearly, the larger the values F1of , F1o, or F1f are, the larger the similarity between
the projective consensus clustering C and the solutions within the projective ensemble
is, and hence the better the quality of C. All these measures range within [0, 1] as well.
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5.1.4 Setting of the Proposed Algorithms

We performed a leave-one-dataset-out approach to set a specific parameter of a
method based on the method performance in the remaining datasets. Roughly speak-
ing, for each dataset the performance of a particular method on the other datasets was
assessed for different values of the parameter, and the value that achieved the max-
imum F1of was then used to obtain a projective clustering solution for the left-out
dataset.

In general, we observed that however the settings of the proposed methods were
scarcely influenced by any specific dataset, which would indicate that a very easy
setup can be performed on new datasets for which a reference classification or other
a-priori knowledge is not available. Specifically, for the MOEA-PCE algorithm, the
population size (t) was set to 50% of the projective ensemble size (i.e., equal to 60),
and the number I of maximum iterations was set to 200; the random noise needed
for the mutation step was obtained via Monte Carlo sampling on a standard Gaussian
distribution. For the EM-PCE algorithm, the best-performance setting of parameter
α of the objective function Q (cf. (11)) resulted in α = 2, which leads to a mini-
mal softness degree in the object-to-cluster assignments of the consensus clustering.
Finally, the number of clusters in the projective ensemble solutions and in the pro-
jective consensus clusterings computed by MOEA-PCE and EM-PCE, was chosen as
the same as the number of classes in the reference classification associated with each
dataset.

5.1.5 Baselines

In order to comparatively evaluate the proposed PCE algorithms, we considered the
following baselines:

– A method that computes a projective consensus clustering by randomly selecting
a solution from the input projective ensemble E . Here, the rationale is that when
no additional information is provided along with E , randomly extracting a pro-
jective clustering solution from E is likely the simplest and fairest comparison, in
case no PCE method can be employed.
To improve the robustness of this baseline, one should repeat a reasonably large
number of times the process of selecting solutions from E . It can be easily shown
that this is equivalent to taking the average result across all solutions in E . In
fact, for the baseline, F1of can be computed as

∑
C∈E F1of (C) Pr(C).1 Since

the probability Pr(C) of randomly selecting a solution C from E can be esti-
mated as |E|−1, ∀C ∈ E , the previous expression becomes equal to the average
|E|−1

∑
C∈E F1of (C) of the F1of results achieved by the various solutions in E .

For this purpose, this baseline is hereinafter referred to as AVG-ensemble.
– A method that computes the projective consensus clusterings so that: (i) the

object-to-cluster assignment Γ values are derived by resorting to any tradi-
tional clustering ensemble algorithm which takes into account only the object-
based representation information of the solutions in the projective ensemble;

1 Analogous considerations hold for the other criteria F1o, F1f , F1of , F1o, and F1f .
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Table 4 Evaluation w.r.t. the reference classification (F1of )

dataset AVG-ensemble MAX-CE PROCLUS LAC MOEA-PCE EM-PCE
Iris .574 .326 .436(.083) .574(.051) .649(.025) .588(.002)

Wine .273 .163 .393(.049) .265(.019) .345(.025) .300(.003)
Glass .224 .134 .251(.041) .216(.039) .279(.009) .298(.007)
Ecoli .454 .244 .481(.066) .451(.050) .518(.020) .564(.013)
Yeast .254 .137 .186(.028) .256(.036) .288(.009) .237(.004)

Mult.-Feat. .157 .083 .010(.006) .028(.021) .270(.019) .300(.015)
Segmentation .205 .132 .313(.070) .085(.101) .334(.018) .400(.008)

Abalone .110 .075 .102(.014) .111(.004) .116(.003) .112(.003)
Waveform .107 .313 .409(.027) .057(.010) .339(.056) .338(.006)

Letter .094 .183 .199(.029) .084(.019) .181(.025) .155(.007)
Isolet .125 .060 .287(.103) .112(.019) .141(.004) .138(.001)

Gisette .505 .136 .235(.148) .507(.039) .595(.015) .532(.006)
p53-Mutants .381 .205 .047(.052) .377(.036) .464(.021) .411(.020)

Amazon .370 .238 .280(.079) .382(.057) .441(.019) .388(.006)
Arcene .275 .013 .122(.040) .288(.054) .367(.012) .142(.002)
Shapes .204 .133 .157(.038) .198(.023) .243(.009) .294(.007)

Tracedata .387 .240 .458(.078) .386(.022) .438(.010) .432(.012)
ControlChart .019 .153 .354(.053) .018(.002) .092(.013) .203(.020)

Twopat .038 .190 .252(.020) .018(.003) .144(.025) .070(.002)
N30 .050 .072 .061(.012) .012(.001) .098(.005) .108(.003)
D75 .021 .021 .016(.003) .004(.001) .033(.002) .038(.001)

S2500 .072 .072 .063(.013) .012(.001) .116(.004) .122(.005)
min .019 .013 .010 .004 .033 .038
max .574 .326 .481 .574 .649 .588
avg .223 .151 .232 .202 .295 .280

(ii) the feature-to-cluster assignments ∆ are computed randomly, since no well-
founded strategy other than PCE can be employed here. Regarding the Γ values,
we considered a number of clustering ensemble methods, i.e., those proposed
in [71, 64, 13] (cf. Sect. 2.2); for the sake of brevity of presentation, we only
reported the results achieved by the clustering ensemble method which has been
recognized as the best one for each dataset and assessment criterion. This baseline
is hereinafter referred to as MAX-CE.

– Two standard projective clustering methods, namely PROCLUS [3] and LAC [23]
(cf. Sect. 2.1).2

5.2 Results

5.2.1 Accuracy

We present accuracy results of the projective consensus clusterings computed by the
proposed MOEA-PCE and EM-PCE algorithms, as well as by the AVG-ensemble,
MAX-CE, PROCLUS, and LAC baselines. Tables 4–6 report on the external eval-
uation w.r.t. the reference classification (assessment criteria F1of , F1o, and F1f ,
respectively), whereas Tables 7–9 report on the internal evaluation w.r.t. the projec-
tive ensemble solutions (assessment criteria F1of , F1o, and F1f , respectively). For
the randomized algorithms (i.e., PROCLUS, LAC, MOEA-PCE, and EM-PCE), all

2 We used the PROCLUS implementation from the publicly available OpenSubspace framework [61].
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Table 5 Evaluation w.r.t. the reference classification (F1o)

dataset AVG-ensemble MAX-CE PROCLUS LAC MOEA-PCE EM-PCE
Iris .864 .879 .657(.109) .847(.095) .967(.026) .880(.002)

Wine .681 .835 .515(.064) .758(.076) .835(.037) .731(.009)
Glass .363 .425 .354(.048) .376(.058) .474(.053) .509(.012)
Ecoli .672 .636 .536(.090) .675(.046) .760(.014) .667(.021)
Yeast .369 .341 .251(.044) .372(.035) .417(.007) .333(.007)

Mult.-Feat. .212 .488 .298(.047) .178(.013) .319(.069) .369(.020)
Segmentation .323 .550 .359(.087) .270(.050) .443(.062) .568(.014)

Abalone .187 .167 .132(.012) .187(.010) .208(.006) .169(.005)
Waveform .375 .500 .500(.039) .368(.012) .515(.070) .415(.001)

Letter .256 .341 .283(.035) .230(.036) .331(.030) .306(.005)
Isolet .866 .844 .579(.103) .828(.149) .959(.031) .978(.001)

Gisette .618 .667 .578(.076) .623(.042) .728(.015) .674(.007)
p53-Mutants .596 .585 .422(.113) .598(.084) .728(.038) .619(.028)

Amazon .447 .504 .383(.065) .455(.076) .555(.036) .488(.009)
Arcene .604 .628 .602(.023) .614(.037) .705(.009) .626(.001)
Shapes .609 .625 .518(.063) .620(.037) .681(.017) .693(.015)

Tracedata .537 .539 .595(.078) .540(.019) .614(.002) .628(.059)
ControlChart .262 .286 .543(.069) .260(.027) .319(.020) .332(.003)

Twopat .297 .400 .306(.016) .304(.011) .355(.011) .296(.002)
N30 .502 .777 .628(.138) .220(.001) .807(.219) .884(.013)
D75 .595 .752 .536(.109) .247(.001) .857(.146) .952(.018)

S2500 .611 .788 .602(.138) .220(.001) .880(.156) .895(.031)
min .187 .167 .132 .178 .208 .169
max .866 .879 .657 .847 .967 .978
avg .493 .571 .463 .445 .612 .591

tables contain average results over 50 different runs along with the corresponding
standard deviation (under brackets).

In the following, we (i) discuss results obtained by the various methods over all
datasets, (ii) analyze in detail the statistical significance of the differences in per-
formance by each method, (iii) present a graphical summary of the results which
illustrates some major findings of our experimental study, and (iv) investigate a bit
deeper on how the effectiveness of the selected methods relates to some ensemble
properties such as the algorithm used for generating the ensemble and/or the number
of clusters in the ensemble members.

Average performance. The results obtained by each method averaged over all
datasets are summarized in the last row of Tables 4–9.

The evaluation w.r.t. the reference classification (Tables 4–6) shows that MOEA-
PCE and EM-PCE outperformed all baselines according to each of the selected crite-
ria. The average and maximum improvements achieved by MOEA-PCE were 0.120
and 0.169 (w.r.t. AVG-ensemble), 0.137 and 0.226 (w.r.t. MAX-CE), 0.070 and 0.149
(w.r.t. PROCLUS), and 0.149 and 0.186 (w.r.t. LAC). The average and maximum im-
provements by EM-PCE were 0.102 and 0.150 (w.r.t. AVG-ensemble), 0.108 and
0.174 (w.r.t. MAX-CE), 0.041 and 0.128 (w.r.t. PROCLUS), and 0.119 and 0.146
(w.r.t. LAC). MOEA-PCE performed better than EM-PCE in terms of all F1of , F1o
and F1f (improvements of 0.015, 0.021, and 0.052, respectively), whereas the two
methods achieved similar results on F1of . Concerning the baselines, MAX-CE was
the worst method w.r.t. F1of and F1f , whereas it was the best baseline in terms of
F1o, even though still worse than both MOEA-PCE and EM-PCE. This behavior of
MAX-CE can be explained as it employs accurate methods (i.e., standard clustering
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Table 6 Evaluation w.r.t. the reference classification (F1f )

dataset AVG-ensemble MAX-CE PROCLUS LAC MOEA-PCE EM-PCE
Iris .679 .624 .667(.001) .682(.040) .974(.019) .667(.001)

Wine .397 .304 .778(.001) .346(.051) .643(.051) .426(.006)
Glass .553 .486 .819(.022) .549(.090) .804(.023) .662(.029)
Ecoli .744 .585 .993(.017) .751(.060) .906(.021) .970(.013)
Yeast .705 .619 .783(.029) .711(.040) .846(.011) .774(.010)

Mult.-Feat. .462 .204 .382(.089) .361(.072) .768(.013) .795(.001)
Segmentation .583 .384 .815(.093) .539(.182) .861(.026) .747(.029)

Abalone .703 .630 .764(.002) .702(.021) .822(.023) .716(.006)
Waveform .248 .628 .831(.025) .183(.040) .660(.067) .792(.001)

Letter .375 .699 .775(.023) .372(.121) .643(.037) .595(.008)
Isolet .141 .080 .585(.074) .131(.004) .171(.004) .143(.001)

Gisette .741 .223 .640(.091) .754(.053) .876(.016) .797(.001)
p53-Mutants .626 .358 .634(.045) .604(.018) .721(.009) .671(.001)

Amazon .803 .482 .722(.073) .800(.029) .890(.005) .828(.001)
Arcene .429 .025 .244(.082) .427(.041) .536(.014) .264(.003)
Shapes .359 .225 .436(.051) .364(.024) .428(.011) .448(.002)

Tracedata .677 .521 .770(.064) .669(.030) .787(.010) .800(.006)
ControlChart .081 .606 .736(.037) .080(.005) .322(.044) .673(.002)

Twopat .138 .533 .851(.029) .070(.015) .451(.079) .233(.001)
N30 .105 .105 .093(.001) .099(.001) .131(.002) .119(.001)
D75 .032 .029 .029(.001) .027(.001) .041(.001) .039(.001)

S2500 .115 .108 .100(.003) .104(.002) .141(.002) .124(.002)
min .032 .025 .029 .027 .041 .039
max .803 .699 .993 .800 .974 .970
avg .441 .384 .611 .424 .610 .558

ensemble methods) only for computing the object-to-cluster assignments, whereas
the feature-to-cluster assignments are computed in a naı̈ve way (cf. Sect. 5.1.5).

The remarks drawn from the evaluation w.r.t. the reference classification were
confirmed by the results in terms of internal assessment criteria (Tables 7–9). In par-
ticular, the gaps in performance between the MAX-CE and PROCLUS baselines and
the proposed MOEA-PCE and EM-PCE were larger than those observed in the pre-
vious evaluation. Indeed, MOEA-PCE and EM-PCE achieved improvements w.r.t.
MAX-CE equal to 0.172 and 0.136 (average), and 0.243 and 0.204 (maximum), re-
spectively. As far as PROCLUS, the improvements obtained by MOEA-PCE and
EM-PCE were 0.267 and 0.231 (average), and 0.307 and 0.268 (maximum), re-
spectively. The better performance of MOEA-PCE w.r.t. EM-PCE was confirmed:
MOEA-PCE reached an average improvement w.r.t. EM-PCE equal to 0.036 (in the
evaluation w.r.t. the reference classification, this improvement was 0.029). Among
the baselines, as expected, AVG-ensemble again outperformed MAX-CE in terms of
the object/feature-based criterion F1of and the feature-based criterion F1f , whereas
MAX-CE performed better in terms of the object-based F1o.

Looking at the standard deviations reported in the tables, both our proposed meth-
ods (especially EM-PCE) revealed to be quite insensitive to randomization. Indeed,
the standard deviations were in the order of 10−3 in most cases, and only occasionally
in the order of 10−2.

Statistical significance. We performed a statistical significance test to assess the rela-
tive performance means of the proposed and competing methods. More precisely, we
adopted an unpaired, unequal-variance T-Test methodology, under the null hypothe-
sis of no difference in the means between any two groups of performance scores of
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Table 7 Evaluation w.r.t. the projective ensemble solutions (F1of )

dataset AVG-ensemble MAX-CE PROCLUS LAC MOEA-PCE EM-PCE
Iris .813 .435 .612(.119) .818(.074) .858(.010) .830(.002)

Wine .533 .333 .281(.020) .583(.043) .603(.008) .569(.002)
Glass .373 .262 .203(.020) .386(.059) .430(.007) .437(.009)
Ecoli .614 .379 .414(.043) .619(.034) .630(.009) .625(.004)
Yeast .596 .341 .231(.028) .595(.038) .610(.008) .586(.017)

Mult.-Feat. .150 .079 .007(.002) .052(.020) .221(.008) .233(.013)
Segmentation .182 .143 .107(.014) .116(.053) .269(.009) .308(.003)

Abalone .686 .379 .191(.022) .690(.021) .675(.011) .541(.011)
Waveform .101 .079 .101(.004) .110(.017) .146(.004) .110(.001)

Letter .142 .088 .084(.007) .128(.060) .196(.005) .146(.002)
Isolet .704 .391 .066(.036) .682(.120) .751(.009) .790(.001)

Gisette .526 .120 .206(.132) .521(.017) .597(.003) .505(.002)
p53-Mutants .565 .345 .052(.048) .563(.017) .628(.005) .632(.001)

Amazon .417 .272 .235(.077) .412(.030) .468(.008) .444(.015)
Arcene .484 .047 .180(.051) .493(.094) .589(.009) .421(.004)
Shapes .404 .308 .163(.023) .424(.026) .444(.009) .468(.009)

Tracedata .667 .435 .416(.051) .679(.069) .723(.008) .716(.001)
ControlChart .137 .017 .013(.001) .143(.029) .186(.005) .037(.002)

Twopat .283 .026 .058(.004) .317(.028) .370(.012) .144(.001)
N30 .201 .220 .076(.010) .118(.001) .323(.013) .301(.003)
D75 .299 .274 .029(.004) .139(.001) .423(.014) .429(.004)

S2500 .302 .271 .100(.018) .123(.001) .442(.013) .449(.010)
min .101 .017 .007 .052 .146 .037
max .813 .435 .612 .818 .858 .830
avg .417 .238 .174 .396 .481 .442

the selected methods. Tables 10–14 show the p-values corresponding to the statistical
tests performed to compare MOEA-PCE vs. EM-PCE (Table 10), MOEA-PCE vs.
the baselines (Tables 11–12), and EM-PCE vs. the baselines (Tables 13–14). Bold-
face and italic p-values corresponded to a fail in the test (i.e., null hypothesis not
rejected) at 5% and 1% significance level (two-tail test), respectively.

All tables show a strong evidence that the null hypothesis was rejected in nearly
all cases. On a total of 1188 tests, the null hypothesis could not be rejected on 58
cases at 5% significance level, and just 12 cases at 1% significance level. Particu-
larly robust appeared the results obtained by MOEA-PCE vs. the AVG-ensemble and
MAX-CE baselines (Tables 11), and EM-PCE vs. the AVG-ensemble and MAX-CE
baselines (Tables 13). Overall, by integrating the evidence of results from the previ-
ous evaluation (Tables 4–9), we can hence state the superiority of MOEA-PCE over
EM-PCE as well as of both MOEA-PCE and EM-PCE over all baselines are actually
statistically significant.

Summary of improvements over the baselines. We summarize in Fig. 2 the average
improvements obtained by the proposed MOEA-PCE and EM-PCE upon the base-
lines. For each of the six assessment criteria, we report the average gains in accuracy
of MOEA-PCE/EM-PCE w.r.t. the baselines, computed by averaging over the dif-
ference between the results obtained by MOEA-PCE/EM-PCE and each baseline.
To relate the accuracy results to the dimensionality of the datasets involved into this
comparison, we further aggregated (averaged) such gains by distinguishing among
datasets having dimensionality |F| < 100, |F| ∈ [100, 1000), and |F| ≥ 1000,
which were represented by the first, second, and third point in each series in the
charts, respectively.
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Table 8 Evaluation w.r.t. the projective ensemble solutions (F1o)

dataset AVG-ensemble MAX-CE PROCLUS LAC MOEA-PCE EM-PCE
Iris .836 .841 .640(.099) .835(.064) .915(.007) .842(.002)

Wine .615 .696 .477(.043) .663(.050) .723(.010) .662(.005)
Glass .416 .505 .323(.032) .442(.065) .513(.008) .511(.010)
Ecoli .758 .754 .581(.068) .768(.036) .810(.013) .804(.005)
Yeast .723 .699 .293(.039) .721(.031) .754(.011) .681(.017)

Mult.-Feat. .138 .225 .113(.010) .115(.009) .216(.009) .262(.015)
Segmentation .220 .335 .198(.028) .190(.026) .313(.008) .343(.005)

Abalone .732 .683 .294(.033) .736(.020) .749(.015) .592(.011)
Waveform .414 .497 .421(.018) .419(.013) .489(.008) .473(.001)

Letter .263 .358 .219(.015) .244(.053) .324(.005) .309(.004)
Isolet .805 .785 .559(.088) .780(.096) .876(.010) .875(.001)

Gisette .588 .622 .565(.037) .586(.023) .693(.004) .615(.003)
p53-Mutants .600 .645 .456(.049) .584(.060) .720(.006) .679(.001)

Amazon .437 .499 .292(.036) .424(.038) .519(.008) .473(.017)
Arcene .717 .791 .684(.062) .703(.094) .840(.007) .800(.001)
Shapes .629 .644 .503(.056) .648(.029) .692(.010) .701(.012)

Tracedata .737 .744 .590(.062) .743(.064) .829(.008) .830(.001)
ControlChart .291 .375 .237(.012) .295(.017) .347(.004) .307(.004)

Twopat .443 .533 .328(.010) .459(.021) .528(.006) .463(.002)
N30 .286 .419 .370(.050) .169(.001) .435(.013) .469(.004)
D75 .399 .515 .388(.052) .205(.001) .551(.015) .580(.005)

S2500 .403 .517 .413(.070) .183(.001) .562(.015) .575(.011)
min .138 .225 .113 .115 .216 .262
max .836 .841 .684 .835 .915 .875
avg .520 .576 .407 .496 .609 .584
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Fig. 2 Summary of the average gains of MOEA-PCE and EM-PCE w.r.t. the baselines.

As illustrated by the plots in the figure, the average gains in accuracy of both
MOEA-PCE and EM-PCE w.r.t. the baselines were always positive, ranging from
0.06 and 0.2, thus confirming evidence of superiority of both our proposed methods.
An interesting remark concerns a relation between the performance trends and the
dimensionality of the datasets. According to four out of six assessment criteria (i.e.,
F1of , F1f , F1of , and F1f ), MOEA-PCE and EM-PCE tended to obtain larger im-
provements upon the baselines as the dimensionality of the dataset increased. This
suggests that our PCE methods can handle high dimensionality better than traditional
projective clustering algorithms, whose performance has shown to be in general in-
versely proportional to the dataset dimensionality, as discussed in some recent stud-
ies [60, 40].
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Table 9 Evaluation w.r.t. the projective ensemble solutions (F1f )

dataset AVG-ensemble MAX-CE PROCLUS LAC MOEA-PCE EM-PCE
Iris .978 .760 .967(.045) .984(.014) .964(.008) .989(.001)

Wine .838 .600 .577(.005) .868(.024) .861(.008) .856(.002)
Glass .823 .685 .628(.010) .827(.022) .833(.007) .843(.003)
Ecoli .831 .719 .800(.005) .834(.026) .848(.007) .818(.006)
Yeast .866 .743 .835(.017) .873(.023) .870(.005) .890(.005)

Mult.-Feat. .622 .578 .186(.062) .654(.027) .656(.008) .662(.001)
Segmentation .796 .664 .573(.056) .814(.071) .854(.014) .815(.005)

Abalone .960 .822 .672(.003) .957(.012) .944(.004) .976(.002)
Waveform .198 .204 .225(.007) .243(.026) .266(.013) .279(.001)

Letter .549 .382 .381(.009) .553(.047) .604(.011) .453(.009)
Isolet .855 .517 .145(.019) .852(.048) .838(.004) .891(.001)

Gisette .715 .284 .604(.084) .719(.041) .750(.005) .771(.001)
p53-Mutants .881 .551 .789(.052) .889(.007) .858(.002) .920(.001)

Amazon .897 .580 .793(.080) .902(.015) .874(.002) .945(.001)
Arcene .617 .077 .334(.071) .629(.087) .664(.010) .546(.006)
Shapes .629 .555 .364(.017) .653(.012) .641(.005) .629(.004)

Tracedata .878 .618 .671(.026) .889(.019) .853(.003) .848(.003)
ControlChart .446 .066 .062(.003) .466(.080) .510(.022) .154(.001)

Twopat .608 .091 .140(.004) .654(.048) .685(.024) .342(.001)
N30 .831 .674 .262(.009) .851(.008) .810(.005) .670(.010)
D75 .814 .649 .084(.003) .787(.045) .799(.008) .741(.006)

S2500 .798 .669 .276(.006) .780(.018) .803(.007) .772(.009)
min .198 .066 .062 .243 .266 .154
max .978 .822 .967 .984 .964 .989
avg .747 .522 .471 .758 .763 .719

Table 10 P-values for unpaired T-Test (df: 98): MOEA-PCE vs. EM-PCE

dataset F1of F1o F1f F1of F1o F1f

Iris 2.1E-08 1.0E-28 8.2E-61 5.2E-26 7.7E-58 8.5E-28
Wine 5.0E-51 1.1E-41 8.5E-30 5.0E-04 2.9E-03 1.2E-41
Glass 1.7E-52 3.3E-05 1.3E-45 3.7E-05 2.9E-01 1.2E-14
Ecoli 5.0E-51 1.1E-41 8.5E-30 5.0E-04 2.9E-03 1.2E-41
Yeast 6.5E-14 4.9E-77 2.6E-56 2.8E-13 1.0E-40 3.2E-38

M.-Feat. 1.6E-33 8.3E-06 6.9E-20 3.5E-07 1.0E-30 2.9E-06
Segm. 1.0E-49 2.1E-19 5.8E-37 3.5E-36 1.3E-36 2.8E-27

Abalone 2.2E-35 4.6E-56 7.1E-37 6.7E-79 9.9E-73 7.5E-53
Wave 2.6E-06 1.9E-13 1.5E-18 2.6E-53 7.3E-19 2.7E-09
Letter 5.9E-01 3.5E-07 6.3E-12 4.5E-60 5.8E-32 2.3E-86
Isolet 3.5E-33 8.4E-05 9.4E-49 9.1E-34 5.0E-01 1.0E-57

Gisette 1.6E-08 5.8E-35 3.0E-36 3.5E-107 1.3E-101 1.2E-37
p53-M. 6.4E-02 1.5E-28 4.6E-39 1.9E-06 5.6E-43 1.5E-75
Amazon 1.0E-01 3.8E-18 3.8E-56 7.0E-15 1.5E-26 1.7E-77
Arcene 7.5E-61 3.4E-48 4.3E-69 9.5E-82 7.7E-40 1.6E-75
Shapes 1.2E-67 4.0E-04 1.2E-16 1.4E-23 1.0E-04 1.1E-21
Trace 3.2E-41 1.0E-01 8.4E-12 2.1E-07 4.0E-01 6.3E-15

Control 1.3E-53 2.9E-05 6.1E-46 4.3E-81 4.7E-70 3.6E-61
Twopat 1.5E-20 2.4E-39 1.5E-24 3.6E-65 1.8E-55 1.7E-58

N30 1.0E-44 1.8E-02 3.9E-46 8.6E-17 4.8E-24 4.6E-72
D75 1.0E-42 3.6E-05 1.5E-22 4.3E-03 2.4E-18 8.9E-59

S2500 9.9E-41 5.1E-01 1.1E-63 4.8E-03 4.7E-06 9.5E-34

Varying the ensemble properties. Here we focus on analyzing the performance of the
selected methods by varying some properties in the projective ensemble. Figures 3–
5 show the average gains of the proposed MOEA-PCE/EM-PCE w.r.t. the baselines
for each assessment criterion. In particular, we varied either the number of clusters
in each member of the ensemble (Figs. 3–4) or the algorithm used for deriving the
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Table 11 P-values for unpaired T-Test (df: 98): MOEA-PCE vs. AVG-ensemble and MAX-CE baselines

MOEA-PCE vs. AVG-ensemble MOEA-PCE vs. MAX-CE

dataset F1of F1o F1f F1of F1o F1f F1of F1o F1f F1of F1o F1f

Iris 1.6E-54 3.3E-53 5.8E-60 1.8E-34 1.7E-52 3.0E-17 1.2E-49 9.6E-29 1.4E-63 1.2E-81 4.1E-51 1.5E-71
Wine 2.6E-53 2.0E-10 6.7E-45 4.8E-17 1.4E-32 1.3E-22 9.9E-52 3.5E-48 2.6E-59 7.6E-73 4.6E-34 3.3E-64
Glass 4.0E-56 3.8E-14 7.4E-53 1.2E-46 5.9E-54 1.8E-14 4.3E-54 3.7E-08 7.3E-58 1.6E-69 1.9E-08 3.9E-68
Ecoli 2.6E-53 2.0E-10 6.7E-45 4.8E-17 1.4E-32 1.3E-22 9.9E-52 3.5E-48 2.6E-59 7.6E-73 4.6E-34 3.3E-64
Yeast 4.4E-57 5.3E-80 2.2E-56 5.6E-17 1.2E-25 4.8E-07 5.5E-56 9.7E-52 1.7E-66 4.5E-77 4.5E-37 2.9E-71

M.-Feat. 3.8E-11 1.8E-19 1.7E-69 1.0E-47 2.6E-48 2.9E-33 4.8E-46 1.9E-22 1.7E-82 2.3E-62 3.4E-09 1.7E-50
Segm. 1.1E-17 5.7E-21 8.5E-52 3.1E-49 5.1E-54 4.1E-33 1.6E-48 2.2E-16 3.2E-63 4.6E-57 1.5E-24 7.3E-58

Abalone 3.5E-76 1.2E-95 4.3E-37 2.8E-09 3.7E-10 8.6E-30 8.0E-51 7.5E-43 4.8E-47 1.8E-72 2.0E-33 2.9E-72
Wave 2.6E-13 6.9E-31 1.2E-40 6.4E-55 2.8E-49 5.4E-38 3.0E-02 1.4E-01 1.6E-03 2.4E-63 7.8E-09 4.3E-36
Letter 1.7E-31 4.9E-14 9.7E-44 1.2E-52 1.1E-56 1.1E-36 2.8E-09 2.2E-02 4.4E-14 2.4E-67 2.2E-44 5.4E-66
Isolet 1.1E-115 2.4E-71 2.9E-47 1.5E-37 8.8E-43 7.9E-34 3.5E-63 2.6E-30 9.5E-71 1.6E-80 5.6E-48 7.7E-96

Gisette 1.9E-42 1.2E-07 2.2E-47 1.6E-70 3.6E-73 6.3E-45 1.7E-70 1.7E-32 8.6E-81 4.8E-111 7.3E-65 7.7E-100
p53-M. 3.2E-49 3.1E-24 2.3E-52 1.2E-53 4.6E-65 2.6E-54 6.5E-50 1.1E-30 9.5E-81 1.4E-85 4.3E-55 1.0E-109
Amazon 1.1E-28 3.0E-43 2.9E-63 6.4E-42 7.4E-52 3.0E-53 1.5E-45 1.8E-13 3.3E-96 1.7E-70 3.0E-23 1.3E-107
Arcene 5.0E-69 2.1E-74 6.3E-46 1.1E-54 1.3E-63 2.4E-35 1.5E-70 3.1E-47 5.3E-79 1.4E-89 2.6E-44 1.0E-88
Shapes 1.1E-81 2.9E-64 3.8E-40 2.1E-34 7.6E-41 1.6E-20 3.9E-47 6.2E-28 7.3E-63 5.4E-60 3.0E-35 1.6E-60
Trace 1.4E-59 7.3E-71 4.1E-53 5.6E-43 5.3E-53 4.3E-50 2.0E-57 1.4E-74 7.7E-72 1.3E-77 2.5E-51 1.1E-97

Control 1.5E-58 7.4E-55 5.4E-38 1.1E-48 3.8E-59 1.0E-25 2.3E-39 6.7E-16 2.2E-41 6.7E-75 1.6E-44 8.1E-66
Twopat 5.2E-43 2.3E-65 1.3E-31 8.4E-45 6.4E-57 2.0E-27 1.6E-23 1.9E-32 2.6E-09 6.9E-74 1.3E-06 5.9E-70

N30 6.7E-97 2.2E-27 4.5E-53 4.8E-50 5.2E-53 5.2E-34 2.1E-24 3.4E-01 4.5E-53 1.7E-46 5.4E-11 2.9E-73
D75 7.7E-126 6.7E-39 2.2E-51 7.9E-49 1.7E-50 4.7E-17 1.2E-35 6.6E-06 1.8E-57 1.1E-52 1.7E-21 2.6E-63

S2500 1.1E-103 6.0E-36 1.4E-61 1.3E-51 2.6E-52 1.0E-05 6.8E-43 1.4E-04 1.3E-66 7.8E-56 2.0E-26 3.4E-64

Table 12 P-values for unpaired T-Test (df: 98): MOEA-PCE vs. PROCLUS and LAC

MOEA-PCE vs. PROCLUS MOEA-PCE vs. LAC

dataset F1of F1o F1f F1of F1o F1f F1of F1o F1f F1of F1o F1f

Iris 1.2E-14 4.8E-26 7.8E-61 2.5E-19 1.0E-24 6.5E-01 2.1E-01 9.7E-12 8.0E-54 4.9E-04 1.7E-11 8.6E-13
Wine 2.9E-03 4.3E-23 4.1E-39 3.1E-38 4.8E-29 1.7E-58 8.8E-01 8.9E-18 6.4E-25 3.4E-02 1.3E-10 7.3E-04
Glass 1.7E-01 2.3E-20 8.2E-04 1.6E-60 9.5E-43 1.7E-98 1.1E-05 6.1E-14 3.5E-26 3.8E-06 7.2E-10 7.9E-02
Ecoli 2.9E-03 4.3E-23 4.1E-39 3.1E-38 4.8E-29 1.7E-58 8.8E-01 8.9E-18 6.4E-25 3.4E-02 1.3E-10 7.3E-04
Yeast 6.0E-22 1.9E-31 2.7E-21 7.0E-63 3.5E-59 7.9E-20 2.7E-01 3.8E-12 6.4E-30 7.0E-03 3.4E-09 3.3E-01

M.-Feat. 1.6E-61 7.4E-02 3.4E-34 3.7E-79 4.1E-73 4.7E-46 1.0E-72 1.4E-19 3.8E-40 9.9E-57 7.4E-76 5.7E-01
Segm. 3.1E-02 3.5E-07 1.6E-03 8.2E-77 7.6E-35 2.3E-38 2.7E-19 3.8E-27 7.8E-17 7.4E-26 1.0E-38 2.5E-04

Abalone 5.9E-01 4.0E-50 5.5E-23 1.1E-87 2.9E-73 5.2E-128 1.7E-25 7.8E-20 3.3E-47 2.9E-05 4.6E-04 1.1E-09
Wave 6.3E-20 1.8E-01 8.5E-25 2.9E-74 8.1E-36 2.2E-32 6.2E-34 7.2E-20 6.6E-57 2.2E-20 3.0E-49 3.5E-07
Letter 1.8E-11 5.5E-11 1.2E-34 3.3E-88 8.7E-48 1.7E-102 7.7E-29 2.9E-27 1.0E-21 2.6E-10 3.2E-14 7.1E-10
Isolet 5.1E-15 1.9E-32 9.5E-39 4.3E-70 4.1E-30 1.7E-83 2.5E-04 1.5E-07 3.1E-73 2.1E-04 8.4E-09 4.6E-02

Gisette 5.6E-18 7.7E-19 5.9E-24 7.8E-26 4.6E-29 1.7E-16 9.3E-02 1.9E-24 3.2E-22 1.5E-35 6.0E-36 2.6E-06
p53-M. 1.1E-49 1.0E-25 1.8E-18 2.2E-55 2.3E-38 2.3E-12 2.3E-05 1.1E-14 6.1E-52 6.4E-33 5.6E-21 9.3E-35
Amazon 3.4E-12 2.3E-26 3.8E-21 1.3E-26 2.5E-43 4.8E-09 9.0E-01 5.1E-12 3.5E-27 3.5E-18 3.0E-23 4.8E-18
Arcene 1.8E-39 3.6E-39 4.0E-30 1.4E-47 4.8E-23 1.7E-35 2.2E-04 2.6E-23 1.2E-25 3.9E-09 1.2E-13 7.5E-03
Shapes 2.2E-13 2.1E-24 3.0E-01 1.3E-65 4.7E-29 7.2E-69 6.5E-04 4.2E-16 3.8E-26 6.1E-06 1.7E-14 4.1E-08
Trace 1.0E-08 8.7E-02 7.4E-02 4.4E-41 1.2E-31 2.1E-43 1.3E-01 2.8E-31 9.6E-35 5.0E-05 1.5E-12 3.8E-18

Control 4.6E-39 1.7E-29 4.7E-70 1.5E-76 2.6E-56 1.3E-67 5.6E-37 5.6E-21 1.1E-38 6.1E-14 5.1E-27 5.6E-04
Twopat 3.5E-47 1.4E-30 2.9E-41 2.5E-82 3.8E-91 1.2E-70 8.6E-34 2.8E-41 6.0E-37 6.3E-19 5.8E-30 1.6E-04

N30 2.1E-19 6.3E-06 4.3E-61 1.4E-98 4.1E-12 2.3E-126 9.8E-60 5.8E-24 1.0E-66 5.5E-61 2.6E-65 1.5E-45
D75 1.9E-39 3.8E-21 2.3E-84 1.5E-83 1.3E-28 3.0E-122 1.2E-59 9.7E-33 5.4E-79 2.2E-66 6.1E-68 6.3E-02

S2500 1.3E-27 3.5E-15 4.3E-83 4.3E-97 3.5E-20 5.2E-155 1.8E-66 6.2E-33 6.1E-96 4.6E-69 9.9E-71 4.1E-12

ensemble solutions (Fig. 5). For the sake of brevity of presentation, we present results
for only one high-dimensional dataset, i.e., p53-Mutants.

Considering Figs. 3–4, for the majority of the assessment criteria, the perfor-
mance of both MOEA-PCE and EM-PCE tended to decrease as the number of clusters
K increased. For both algorithms, the trends of object & feature-based criteria (i.e.,
F1of and F1of ) followed those of object-based only criteria (i.e., F1o and F1o),
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Table 13 P-values for unpaired T-Test (df: 98): EM-PCE vs. AVG-ensembles and MAX-CE baselines

EM-PCE vs. AVG-ensemble EM-PCE vs. MAX-CE

dataset F1of F1o F1f F1of F1o F1f F1of F1o F1f F1of F1o F1f

Iris 3.6E-112 9.7E-97 2.8E-117 9.1E-45 2.2E-22 4.2E-108 4.6E-111 3.9E-03 2.0E-144 1.6E-111 6.1E-03 1.0E-172
Wine 6.2E-47 7.3E-30 1.4E-62 1.2E-26 2.8E-48 1.7E-21 6.4E-70 9.6E-14 6.7E-74 9.6E-92 5.0E-50 5.7E-63
Glass 3.4E-48 2.8E-29 1.6E-30 8.1E-44 2.2E-49 1.6E-43 8.8E-68 1.8E-42 2.7E-40 4.8E-65 1.4E-04 2.6E-87
Ecoli 6.2E-47 7.3E-30 1.4E-62 1.2E-26 2.8E-48 1.7E-21 6.4E-70 9.6E-14 6.7E-74 9.6E-92 5.0E-50 5.7E-63
Yeast 4.1E-76 2.5E-85 2.2E-43 1.4E-04 1.8E-22 1.6E-37 3.3E-70 6.1E-10 2.0E-60 1.3E-58 1.6E-09 9.7E-76

M.-Feat. 3.1E-40 1.0E-34 1.5E-186 9.3E-42 6.2E-47 4.1E-75 3.3E-59 8.8E-40 9.1E-199 9.7E-55 1.3E-22 6.8E-91
Segm. 6.0E-49 8.8E-10 4.7E-39 7.7E-79 3.3E-70 2.1E-31 2.3E-75 4.5E-12 1.0E-55 1.4E-84 2.2E-15 7.1E-75

Abalone 1.6E-70 7.2E-101 7.8E-21 7.8E-56 3.8E-56 1.5E-46 1.5E-55 7.8E-03 3.3E-59 3.5E-58 4.6E-47 1.4E-94
Wave 1.4E-39 7.7E-131 7.9E-139 6.4E-53 2.0E-82 9.3E-130 1.3E-31 1.8E-116 2.6E-113 3.7E-79 2.6E-63 4.0E-128
Letter 2.3E-58 1.4E-57 1.1E-71 1.3E-19 3.7E-56 7.2E-52 1.2E-31 2.8E-43 8.8E-56 2.1E-74 1.7E-57 1.6E-45
Isolet 1.7E-202 2.8E-191 2.5E-22 3.6E-124 1.9E-128 1.2E-115 5.6E-155 2.7E-152 3.8E-94 8.0E-157 8.4E-134 1.9E-165

Gisette 1.8E-57 2.1E-48 1.7E-145 1.2E-56 1.2E-50 6.5E-79 6.4E-90 3.5E-08 5.0E-195 1.7E-118 2.8E-23 6.2E-125
p53-M. 1.0E-48 1.0E-01 1.5E-154 6.2E-107 1.1E-105 2.3E-141 4.4E-51 3.7E-11 7.1E-196 7.5E-138 1.1E-87 3.5E-189
Amazon 4.6E-51 1.1E-76 8.2E-144 1.9E-16 1.0E-19 2.8E-182 8.9E-71 3.2E-16 5.3E-200 3.2E-53 2.4E-14 3.3E-225
Arcene 2.1E-119 1.6E-127 3.1E-90 9.4E-61 5.9E-133 6.9E-54 3.0E-92 4.0E-37 4.7E-98 1.2E-98 5.6E-87 5.0E-94
Shapes 1.6E-83 3.0E-67 1.4E-82 2.5E-43 1.6E-40 1.0E+00 3.0E-69 7.0E-34 4.0E-102 1.2E-62 1.0E-35 1.4E-65
Trace 7.4E-49 3.8E-07 2.3E-67 2.4E-106 9.0E-104 2.4E-52 1.3E-61 2.4E-14 8.9E-85 1.6E-143 4.2E-102 1.3E-95

Control 3.1E-26 9.1E-97 1.4E-121 4.1E-90 1.9E-30 1.1E-140 4.1E-23 1.1E-60 3.3E-75 6.3E-56 1.4E-60 3.7E-115
Twopat 1.5E-100 9.9E-95 3.5E-159 1.3E-119 2.7E-55 6.0E-117 5.3E-87 7.8E-86 1.2E-183 4.1E-116 6.7E-82 1.0E-115

N30 1.7E-105 4.2E-88 3.5E-51 3.5E-73 2.7E-84 2.5E-60 1.2E-54 5.1E-46 3.5E-51 1.0E-68 9.6E-57 8.7E-03
D75 9.7E-148 1.5E-85 9.9E-65 6.0E-77 6.1E-77 1.2E-53 1.7E-73 3.6E-53 2.6E-72 1.1E-80 3.3E-55 1.5E-58

S2500 6.6E-100 3.7E-70 5.4E-33 3.3E-58 2.2E-59 1.7E-25 1.8E-51 1.0E-28 7.4E-45 2.9E-62 1.3E-36 1.1E-53

Table 14 P-values for unpaired T-Test (df: 98): EM-PCE vs. PROCLUS and LAC

EM-PCE vs. PROCLUS EM-PCE vs. LAC

dataset F1of F1o F1f F1of F1o F1f F1of F1o F1f F1of F1o F1f

Iris 3.6E-17 4.2E-19 8.5E-01 3.2E-17 4.8E-19 1.4E-03 6.3E-02 1.9E-02 1.1E-02 2.7E-01 4.8E-01 1.9E-02
Wine 1.2E-11 6.7E-14 3.3E-11 2.2E-36 7.0E-28 8.5E-32 1.1E-21 2.5E-01 3.4E-31 2.3E-01 6.7E-09 8.1E-05
Glass 1.9E-10 7.2E-29 2.4E-49 1.3E-65 9.3E-44 5.3E-76 3.1E-20 1.1E-21 1.3E-11 2.1E-07 1.6E-09 7.6E-06
Ecoli 1.2E-11 6.7E-14 3.3E-11 2.2E-36 7.0E-28 8.5E-32 1.1E-21 2.5E-01 3.4E-31 2.3E-01 6.7E-09 8.1E-05
Yeast 3.1E-17 8.3E-18 5.0E-02 2.0E-76 3.0E-61 6.4E-29 6.7E-04 3.7E-10 5.4E-15 1.6E-01 1.4E-11 5.5E-06

M.-Feat. 8.7E-81 1.5E-14 6.7E-35 9.6E-66 6.8E-71 2.0E-45 4.6E-82 1.8E-67 3.6E-40 6.4E-67 1.5E-68 3.9E-02
Segm. 1.3E-11 2.2E-22 8.8E-06 1.5E-63 2.0E-38 2.0E-33 4.7E-27 4.5E-43 2.0E-10 8.4E-30 1.4E-41 8.9E-01

Abalone 1.1E-05 4.3E-29 3.6E-52 8.0E-80 1.7E-55 2.3E-172 4.4E-02 2.4E-17 2.7E-05 1.4E-55 7.3E-57 2.1E-15
Wave 5.0E-24 4.3E-20 9.4E-15 2.8E-20 5.3E-26 2.1E-45 8.3E-104 1.0E-30 7.1E-60 8.8E-01 1.8E-33 5.0E-13
Letter 2.3E-14 2.6E-05 1.6E-51 3.8E-52 1.7E-42 1.4E-60 2.8E-34 5.0E-20 1.9E-17 4.5E-02 2.5E-11 4.2E-20
Isolet 1.4E-13 3.5E-31 5.2E-40 1.1E-65 1.1E-29 5.0E-80 1.1E-12 5.2E-09 4.3E-27 8.2E-08 1.1E-08 6.0E-07

Gisette 8.6E-19 9.5E-12 2.2E-16 7.5E-21 1.4E-12 1.0E-18 4.0E-05 2.2E-11 7.8E-07 1.5E-08 1.2E-11 8.2E-12
p53-M. 4.7E-50 9.7E-17 7.6E-07 1.3E-54 2.7E-34 1.0E-22 1.2E-07 1.1E-01 1.7E-30 9.8E-32 7.6E-15 6.7E-33
Amazon 9.0E-13 2.7E-15 1.4E-13 5.5E-25 2.2E-43 6.2E-18 4.9E-01 4.0E-03 1.4E-08 2.9E-09 8.4E-12 3.8E-26
Arcene 8.2E-04 1.9E-09 9.6E-02 3.2E-35 1.2E-17 3.1E-26 3.2E-24 3.6E-02 5.7E-32 2.9E-06 3.4E-09 1.9E-08
Shapes 1.6E-30 1.1E-25 1.0E-01 1.4E-68 2.8E-30 1.4E-63 4.7E-35 1.2E-19 3.9E-29 5.4E-16 7.5E-18 3.2E-19
Trace 2.6E-02 1.8E-02 2.0E-03 1.7E-39 3.2E-31 6.7E-43 1.1E-20 2.5E-14 4.4E-35 4.6E-04 1.1E-12 1.7E-20

Control 4.0E-27 1.1E-26 3.4E-16 2.6E-69 4.7E-46 1.1E-78 2.6E-50 5.1E-24 3.0E-128 9.2E-30 1.4E-05 3.2E-31
Twopat 1.9E-49 6.8E-05 1.3E-66 3.9E-71 6.0E-58 8.9E-99 6.8E-85 1.2E-05 5.1E-52 7.9E-41 1.9E-01 9.1E-42

N30 6.2E-33 1.5E-17 2.5E-64 2.5E-81 1.2E-18 1.4E-129 2.3E-75 1.1E-84 3.1E-81 5.3E-86 7.6E-95 5.3E-95
D75 8.3E-46 1.1E-31 3.0E-65 1.0E-166 2.1E-30 9.1E-143 2.3E-88 6.6E-80 6.7E-111 5.0E-94 1.8E-92 5.1E-09

S2500 7.4E-39 2.9E-20 6.9E-69 9.8E-90 1.4E-21 2.4E-133 4.2E-68 4.5E-67 3.1E-69 4.0E-75 6.8E-77 8.3E-03

and were more largely subject to fluctuations. Moreover, while the average gains
measured by the feature-based only criteria showed relatively small variations, the
performance difference especially between MOEA-PCE and the baselines showed a
drastic reduction from K = 3 to K = 4, and generally tended to decrease as the
number of clusters increased.



Projective Clustering Ensembles 37

.300

.250

.200

.150
ofF1

.100

.050

.000

3 4 5 6 7 8 9 103 4 5 6 7 8 9 10

K

.300

.250

.200

.150
o

F1

.100

.050

.000

3 4 5 6 7 8 9 103 4 5 6 7 8 9 10

K

.300

.250

.200

.150fF1

.100

.050

.000

3 4 5 6 7 8 9 103 4 5 6 7 8 9 10

K

(a) F1of (b) F1o (c) F1f

.300

.250

.200

.150ofF1

.100

.050

.000

3 4 5 6 7 8 9 103 4 5 6 7 8 9 10

K

.300

.250

.200

.150oF1

.100

.050

.000

3 4 5 6 7 8 9 103 4 5 6 7 8 9 10

K

.300

.250

.200

.150fF1

.100

.050

.000

3 4 5 6 7 8 9 103 4 5 6 7 8 9 10

K

(a) F1of (b) F1o (c) F1f

Fig. 3 Average gains of MOEA-PCE w.r.t. the baselines by varying the number of clusters in the ensemble
members (p53-Mutants dataset).
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Fig. 4 Average gains of EM-PCE w.r.t. the baselines by varying the number of clusters in the ensemble
members (p53-Mutants dataset).

As concerns the choice of the method for generating the ensemble (Fig. 5), we ob-
served that the average gains obtained by MOEA-PCE and EM-PCE w.r.t. the base-
lines were similarly affected according to F1of , F1f , F1o, and F1o. Specifically,
considering F1of and F1f (resp. F1o and F1o), both MOEA-PCE and EM-PCE
gains were lower (resp. higher) on ensembles generated by the PROCLUS projective
clustering algorithm. Moreover, in terms of F1of and F1f , the relative performance
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Fig. 5 Average gains of MOEA-PCE and EM-PCE w.r.t. the baselines by varying the ensemble generation
method (p53-Mutants dataset).

Table 15 Execution times (milliseconds)

TOTAL ONLINE OFFLINE
MOEA- EM- MOEA- EM- MOEA- EM-

dataset PCE PCE PCE PCE PCE PCE
Iris 2,056 33 2,056 28 — 5

Wine 2,558 101 2,558 94 — 7
Glass 7,712 201 7,712 190 — 11
Ecoli 14,401 240 14,401 226 — 15
Yeast 227,878 1,259 227,878 1,067 — 193

Mult.-Feat. 490,602 56,655 490,602 13,852 — 42,803
Segmentation 233,951 4,931 233,951 4,361 — 570

Abalone 3,411,116 8,354 3,411,116 7,240 — 1,114
Waveform 125,247 4,005 125,247 2,730 — 1,276

Letter 2,248,695 27,566 2,248,695 25,069 — 2,497
Isolet 20,676,754 666,809 20,676,754 154,468 — 512,341

Gisette 966,108 804,676 966,108 243,839 — 560,837
p53-Mutants 58,695 16,492 58,695 3,955 — 12,537

Amazon 395,988 24,684 395,988 5,797 — 18,887
Arcene 120,537 20,961 120,537 4,903 — 16,058
Shapes 211,654 10,800 211,654 2,659 — 8,141

Tracedata 12,777 1,120 12,777 776 — 343
ControlChart 50,798 750 50,798 450 — 300

Twopat 31,850 8,576 31,850 7,928 — 647
N30 164,969 3,916 164,969 3,552 — 364
D75 135,297 2,592 135,297 1,359 — 1,234

S2500 290,408 3,036 290,408 2,372 — 664

variations MOEA-PCE and EM-PCE were quite similar on ensembles generated by
LAC.

5.2.2 Efficiency

Table 15 shows the runtimes of the proposed algorithms MOEA-PCE and EM-PCE.
The reported times (expressed in milliseconds) are organized to distinguish between
the online and offline phases. This evaluation was mainly aimed to assess that EM-
PCE always achieved a large efficiency gain w.r.t. MOEA-PCE, confirming the com-
plexity analysis reported in Sect. 4.3. Looking at the total runtimes, EM-PCE outper-
formed MOEA-PCE by 2 orders of magnitude on 13 out of 22 datasets, while being
1 order of magnitude faster on other 6 datasets, and 3 orders faster on Abalone. The
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two algorithms performed on the same order of magnitude only on Gisette and p53-
Mutants, which could be ascribed to the high dimensionality and minimal number of
classes (2) of these datasets; on the other hand, EM-PCE still outperformed MOEA-
PCE in runtime on the two datasets with higher dimensionality (i.e., Amazon and
Arcene), as we observed that EM-PCE converged with fewer iterations than MOEA-
PCE. It is also interesting to observe the contribution of the online phase to the total
runtime by EM-PCE: the online-to-total ratio was 64% on average, up to a maximum
of 94% on Glass, and above 50% on 15 out of 22 datasets.

5.3 Application: PCE for News Stories

In the Introduction, we depicted an example scenario for clustering news summaries
and supporting cluster-based indexing. Here we use a similar scenario to demonstrate
the applicability of PCE to a real-world large document collection.

Reuters Corpus Volume 1 (RCV1) [51] is a major benchmark for text classifi-
cation/clustering research, which consists of over 800,000 newswire stories in XML
format. RCV1 lends itself particularly well for our case study since every news is
originally provided with possibly multiple categorizations according to three differ-
ent category fields: TOPICS (i.e., major subjects of a news), INDUSTRIES (i.e., types
of businesses discussed), and REGIONS (i.e., geographic locations as well as eco-
nomic/political information about a news). Each of these category fields corresponds
to a different value for the class attribute of the metadata.codes element, and
the category values are alphanumerical codes contained in the relative code child el-
ement. Moreover, every news has three main textual elements: title, headline,
and text; in most cases, the headline text is the same as, or is contained in, the
title text. For example, a news with “USA: Netscape unveils new products, em-
braces Microsoft” as title is assigned with two TOPICS codes (“C22”, “CCAT”),
three INDUSTRIES codes (“I33020”, “I3302020”, “I3302021”), and one REGIONS
code (“USA”).

For our experiments, we chose to ignore the body of the news (i.e., the text
element), and exploited only the content within titles and headlines to generate the
feature (term) space. This setting resembles the scenario discussed in the Introduc-
tion, where the full-text content of the news is not made freely available to the users,
which can only directly access summaries of the news (i.e., titles and headlines).

We built an evaluation collection, hereafter denoted as RCV1-ensemble. Fig-
ure 6 shows an overview of the process of generation of RCV1-ensemble, which
is described next in detail. From the whole RCV1 collection, we filtered out very
short news (i.e., XML documents with size less than 6KB), and any news that did
not have at least one value for each of the three category fields. Next, since there
is a one-to-many relationship between labels and codes in the RCV1 categorization
systems [51], we mapped each category code value to its corresponding label (code-
to-label mapping module in Figure 6); for example, the INDUSTRIES codes “I3302”
and “I33020” are both mapped to the “Computer Systems and Software” label. Fi-
nally, we selected all news with labels having document-frequency above the fol-
lowing thresholds: 1000 for the TOPICS field (which corresponded to the 16 most
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Fig. 6 Illustration of RCV1-ensemble generation

frequent labels for the TOPICS field), 250 for the REGIONS field (19 most frequent
REGIONS labels), and 300 for the INDUSTRIES field (24 most frequent INDUSTRIES
labels). This resulted in a collection of 7,891 news. The feature space of the news
in RCV1-ensemble was created by processing the text of the title and of the
headline. We discarded strings of digits, retained alphanumerical terms, and per-
formed removal of stop-words and word stemming (based on Porter’s algorithm3).
Moreover, the terms with a document frequency greater than 50% were filtered out.
This finally led to 5,460 features.

We generated a reference projective ensemble of 24 members based on the three
category fields as follows:

– 3 multi-label categorizations, one for each of the three category fields. Each news
was assigned with as many categories as all of its labels that belong to a given
field;

– 3 single-label categorizations, one for each of the three category fields. Each news
was assigned with one category corresponding to the news label (of a given field)
having the highest document-frequency in the news collection;

– 3 multi-label categorizations, one for each of the three category fields. Each news
was assigned with at most two categories corresponding to its two labels (of a
given field) having the highest document-frequency in the news collection;

– 3 multi-label categorizations, one for each of the three category fields. Each news
was assigned with at most three categories corresponding to its three labels (of a
given field) having the highest document-frequency in the news collection;

– For each of the above categorizations, one ensemble member was derived with
unweighted features, and another one was derived with weighted features. For the
latter case, the weight of a given feature assigned to a group of news was com-

3 http://www.tartarus.org/∼martin/PorterStemmer/.
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Table 16 RCV1-ensemble: Evaluation w.r.t. the projective ensemble solutions

assessment AVG- MAX- MOEA- EM-
criterion ensemble CE PCE PCE

F1of .227 .096 .261 .229
F1o .319 .336 .348 .324
F1f .500 .354 .515 .579

Table 17 RCV1-ensemble: Execution times (milliseconds)

MOEA- EM-
PCE PCE

TOTAL 5,211,395 2,476,814
ONLINE 5,211,395 1,101,451
OFFLINE — 1,375,363

puted as directly proportional to the corresponding cumulated term-frequency
over all news in that group.

Suppose there are three news n1, n2, n3, which are originally labeled as
follows: T2, T4, R1, I5, I3, I2 (for n1), T1, T6, T3, R1, R2, R4, I1, I2, I4 (for n2),
T4, T3, T5, T7, R3, R2, I5, I3, I7 (for n3), where T s, Rs and Is denote TOPICS, RE-
GIONS, and INDUSTRIES labels, respectively, and the subscript index denotes the
rank of a label w.r.t. its document-frequency. A single-label TOPICS-based catego-
rization is: n1 assigned to T2, n2 assigned to T1, and n3 assigned to T3. A multi-label
(at-most-2) INDUSTRIES-based categorization is: n1 assigned to categories I2, I3, n2

assigned to I1, I2, and n3 assigned to I3, I5. Moreover, suppose that a group of news
contains the following terms (in parentheses, the total count of occurrences over all
news in the group): t4 (6), t2 (12), t7 (18), t5 (8); in the case of weighting, for instance
t4 is weighted with 6/44.

Table 16 shows the accuracy values based on internal validity criteria obtained
by the proposed PCE methods as well as the two baselines, while Table 17 summa-
rizes the time performances of the PCE methods. MOEA-PCE outperformed both
the baselines, with maximum gains of 0.034 (F1of ), 0.029 (F1o), and 0.161 (F1f ).
While requiring nearly half of the total running time by MOEA-PCE, EM-PCE gave
comparable results to AVG-ensemble according to F1of and F1o, and better than
MAX-CE based on F1of ; however, EM-PCE still significantly outperformed both
baselines according to F1f , with maximum gain of 0.225.

In order to qualitatively compare our best method w.r.t. the best baseline method
(i.e., MOEA-PCE w.r.t. AVG-ensemble), we also analyzed the consensus cluster de-
scriptions, focusing on each cluster’s top ranked terms according to their feature-
to-cluster assignment values. We randomly selected a (Pareto optimal) consensus
clustering obtained by MOEA-PCE and compared it to AVG-ensemble. The goal
was to gain some knowledge about the characteristics and the differences in the re-
spective cluster descriptions. A first finding concerns an evident good separation of
the MOEA-PCE cluster descriptions, while overlapping descriptors were found in
some of the baseline clusters. For example, more baseline clusters were described by
the same terms concerning ‘oil’ and ‘petroleum’, or ‘technology’ and ‘computers’,
or ‘tobacco’. The baseline cluster descriptions tended to contain a larger number of
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broad topic-terms than MOEA-PCE, like ‘stock’, ‘bank’, ‘oil’, ‘airline’; however, this
also resulted in a higher sensitivity to the presence of extremely popular terms (i.e.,
implicit stopwords); for example, the term ‘usa’ was present in nearly all baseline
cluster descriptions. Overall, MOEA-PCE descriptions typically covered more topics
than those obtained by the baseline method. Moreover, the MOEA-PCE descriptions
spanned over terms that, within the same cluster, usually corresponded to labels from
the TOPICS, REGIONS and INDUSTRIES fields, whereas the baseline descriptions
more often corresponded to INDUSTRIES labels only, and sometimes to REGIONS la-
bels as well. This explains why the MOEA-PCE consensus clustering integrated the
different perspectives of the data (i.e., TOPICS, REGIONS, INDUSTRIES) better than
the baseline method.

6 Conclusion

The projective clustering ensembles (PCE) problem fills the gap between projec-
tive clustering and clustering ensembles, which were originally conceived as sepa-
rate problems to handle high dimensionality and multi-view data issues, respectively.
PCE is formally defined as an optimization problem, with a two-objective formula-
tion and a single-objective formulation, which mainly differ in the way object- and
feature-based cluster representations are treated. For solving either PCE formulation,
we have provided well-founded heuristics: the two-objective PCE is developed in the
MOEA-PCE algorithm, which resorts to the domain of multi-objective evolutionary
algorithms, and the single-objective PCE is implemented in an EM-like algorithm,
called EM-PCE. As shown in the experimental evaluation, MOEA-PCE generally
produces higher-quality projective consensus clusterings, but pays in efficiency w.r.t.
EM-PCE. Both algorithms improve upon baseline methods in terms of external as
well as internal evaluation criteria. We have also illustrated how the PCE problem
is applied to a real-life case study, hence assessed how PCE methods can be used
to address the two issues of high dimensionality and multi-view data in clustering
applications.

A major goal of this paper was to define a complete specification of the PCE
problem originally proposed in [35], with theoretical insights as well extensive ex-
perimental evaluation. While maintaining our approach to solving PCE as an opti-
mization problem, we are certainly aware that improved or alternative formulations
can be defined according to a number of aspects. The two-objective PCE treats sep-
arately the object-based and feature-based representation of any projective cluster in
the optimization of the objective functions. By considering the two representations
as interrelated, the resulting formulation would likely improve the significance of the
detected clusters. In this respect, solutions have been identified in [36], where en-
hancements to the single-objective PCE are introduced to reduce the accuracy gap
from the two-objective PCE, and in [37], where the two cluster representations are
kept together in a suitably defined notion of distance for projective clustering solu-
tions. Another issue in the current PCE formulations concerns a lack of versatility
with respect to standard approaches to the clustering ensembles problem. As theo-
retically demonstrated in [37], cluster-based approaches to clustering ensembles are
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well-suited to PCE. The development of methods for PCE that can profitably exploit
existing clustering ensemble schemes is hence a further point of investigation which
mainly concerns improvement in applicability of PCE.
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A Proofs

A.1 Proofs of Section 4.1

Lemma 1 Given two projective clustering solutions C′, C′′, it holds that
ψo(C′, C′′) = 0 if and only if:

1) For each clusterC ′ ∈ C′, there exists a clusterC ′′ ∈ C′′ such that ΓC′,o = ΓC′′,o,
∀o

2) For each clusterC ′′ ∈ C′′, there exists a clusterC ′ ∈ C′ such that ΓC′′,o = ΓC′,o,
∀o

Proof Since ψo(C′, C′′) is defined in (5) as the average between ψo(C′, C′′) and
ψo(C′′, C′), and ψo(·, ·) ≥ 0, the Lemma is proved if and only if both ψo(C′, C′′) = 0
and ψo(C′′, C′) = 0. Regarding ψo(C′, C′′), we note that:

ψo(C′, C′′)=
1

|C′|
∑
C′∈C′

(
1−max
C′′∈C′′

J (ΓC′ ,ΓC′′)

)
= 1− 1

|C′|
∑
C′∈C′

max
C′′∈C′′

J (ΓC′ ,ΓC′′)

Thus, ψo(C′, C′′) = 0 if and only if
∑
C′∈C′ maxC′′∈C′′ J (ΓC′ ,ΓC′′) = |C′|, i.e.,

as J ∈ [0, 1], if and only if, for each C ′ ∈ C′, there exists a cluster C ′′ ∈ C′′ such
that J (ΓC′ ,ΓC′′) is maximum (equal to 1). As the extended Jaccard coefficient J
between any two real-valued vectors u and v is maximum if and only if u and v are
exactly the same, the condition for having ψo(C′′, C′) = 0 corresponds to Condition
1) of the Lemma. An analogous reasoning applies to prove that Condition 2) is instead
required for having ψo(C′′, C′) = 0.

In summary, Condition 1) of the Lemma is necessary and sufficient for
ψo(C′, C′′) = 0 , while Condition 2) is necessary and sufficient to have ψo(C′′, C′) =
0. This proves the Lemma. ut

Lemma 2 Given two projective clustering solutions C′, C′′, it holds that
ψf (C′, C′′) = 0 if and only if:

1. For each cluster C ′ ∈ C′ there exists a cluster C ′′ ∈ C′′ such that ∆C′,f =
∆C′′,f , ∀f

2. For each cluster C ′′ ∈ C′′ there exists a cluster C ′ ∈ C′ such that ∆C′′,f =
∆C′,f , ∀f
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Proof Analogous to Lemma 1. ut

Proposition 1 The two objective functions Ψo and Ψf of the problem defined in (2)
are conflicting w.r.t. one another.

Proof To prove the proposition, it is sufficient to find a projective ensemble E , and
any two candidate projective clustering solutions C′, C′′, such that the objective func-
tions Ψo and Ψf disagree when applied to them. Formally, it should be proved that
∃ E , C′, C′′ such that:

(Ψo(C′, E)− Ψo(C′′, E))× (Ψf (C′, E)− Ψf (C′′, E)) < 0

which corresponds to either Ψo(C′, E) > Ψo(C′′, E) ∧ Ψf (C′, E) < Ψf (C′′, E) or
Ψo(C′, E) < Ψo(C′′, E) ∧ Ψf (C′, E) > Ψf (C′′, E).

A choice for E , C′ and C′′ that satisfies the above requirement is as follows. Sup-
pose E is composed by only one projective clustering solution Ĉ, and is defined over
a set of three 2-dimensional objects (i.e., |D| = 3 and |F| = 2). Ĉ has two projective
clusters Ĉ1 and Ĉ2, whose object- and feature-based representations are as follows:

ΓĈ1
= (1, 0, 0) ∆Ĉ1

= (1, 1) ΓĈ2
= (0, 1, 1) ∆Ĉ2

= (1, 0)

The first cluster of Ĉ contains the object o1 and is described by features 1 and 2,
whereas the second cluster of Ĉ contains the objects o2 and o3 and is described by
feature 1 only.

Moreover, let C′ = {C ′1, C ′2} and C′′ = {C ′′1 , C ′′2 }. The clusters within C′ have
the following object- and feature-based representations:

ΓC′1 = (1, 0, 0) ∆C′1
= (0, 1) ΓC′2 = (0, 1, 1) ∆C′2

= (1, 1)

That is, one cluster of C′ (i.e., C ′1) contains the object o1 and is described by feature
2, and the other cluster (i.e., C ′2) contains the objects o2 and o3, and is described by
all features. The clusters within C2 are represented as follows:

ΓC′′1 = (1, 1, 0) ∆C′′1
= (1, 1) ΓC′′2 = (0, 0, 1) ∆C′′2

= (1, 0)

That is, in C′′, one cluster (i.e., C ′′1 ) contains the objects o1 and o2 and is described
by features 1 and 2, and the other cluster (i.e., C ′′2 ) contains the object o3 and is
described by feature 1.

The pair 〈C′, Ĉ〉 satisfies the conditions of Lemma 1, but does not comply with
Lemma 2: it holds that ψo(C′, Ĉ) = 0 and ψf (C′, Ĉ) > 0. As Ĉ is the only solution in
the projective ensemble E , this implies that:

Ψo(C′, E) = 0 and Ψf (C′, E) > 0

Conversely, regarding the pair 〈C′′, Ĉ〉, Lemma 2 applies, whereas Lemma 1 does not.
Thus, we have:

Ψo(C′′, E) > 0 and Ψf (C′′, E) = 0

From the latter statements, it is easy to verify that (Ψo(C′, E)− Ψo(C′′, E)) ×
(Ψf (C′, E)− Ψf (C′′, E)) < 0, which proves the Proposition. ut
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A.2 Proofs of Section 4.2.1

Proposition 2 In reference to the expression Λo,f and the event Ao,f introduced in
Def. 7, it holds that:

Λo,f =
1

|E|
∑
Ĉ∈E

∑
Ĉ∈C

ΓĈ,o ∆Ĉ,f (7)

Proof According to the law of total probability, it results that:

Λo,f = Pr(Ao,f |E) =
∑
Ĉ∈E

Pr(Ao,f |Ĉ) Pr(Ĉ) = 1

|E|
∑
Ĉ∈E

Pr(Ao,f |Ĉ) (17)

since the probability Pr(Ĉ) of selecting the clustering solution Ĉ is assumed to be the
same for all the solutions within E , as no further information is coupled with E (cf.
Sect. 3); thus, Pr(Ĉ) = |E|−1, ∀Ĉ ∈ E .

The event Ao,f |Ĉ is dependent from the set of events {“o ∈ Ĉ ” | Ĉ ∈ Ĉ}, which
represent the assignments of object o to the various clusters within Ĉ. Such a set is
a partition of the event space; thus, it can be exploited for computing Pr(Ao,f |Ĉ)
according to the law of total probability:

Pr(Ao,f |Ĉ) =
∑
Ĉ∈Ĉ

Pr(Ao,f |“o ∈ Ĉ ”) Pr(“o ∈ Ĉ ”) (18)

As Pr(“o ∈ Ĉ ”) = Pr(o|Ĉ) = ΓĈ,o according to Def. 2 and Pr(Ao,f |“o ∈ Ĉ ”) =
Pr(f |Ĉ) = ∆Ĉ,f , since the probability that a feature f is informative for any object
in a given projective cluster Ĉ can reasonably be assumed equal to the probability
Pr(f |Ĉ) = ∆Ĉ,f that f is informative for Ĉ, any object of a given projective cluster,
(17) can be rewritten as:

Pr(Ao,f |Ĉ) =
∑
Ĉ∈Ĉ

ΓĈ,o ∆Ĉ,f

Substituting the latter expression into (18), we obtain

Λo,f =
1

|E|
∑
Ĉ∈E

∑
Ĉ∈Ĉ

ΓĈ,o ∆Ĉ,f

which proves the proposition. ut

Proposition 3 Let E be a projective ensemble defined over a set D of data ob-
jects, where each o ∈ D is described by a set F of features. Given any two ob-
jects o,o ′ ∈ D, let do,o ′ be the squared Euclidean distance between the object-
to-cluster assignments of o and o ′ to the various clusters of all the solutions in E ,
i.e., do,o ′ =

∑
Ĉ∈E

∑
Ĉ∈Ĉ(ΓĈ,o − ΓĈ,o ′)2. It holds that the squared Euclidean dis-

tance ‖Λo−Λo ′‖2 between the feature-based representations of o and o′ is directly
proportional to do,o ′ .
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Proof Let us denote by Φ = {C1, . . . , CH} the global set
⋃
Ĉ∈E Ĉ of clusters con-

tained within all the solutions in the projective ensemble, where H =
∑
Ĉ∈E |Ĉ|.

According to (7), it holds that:

‖Λo−Λo ′‖2 =
∑
f∈F

(Λo,f − Λo ′,f )
2
=
∑
f∈F

(
1

|E|

H∑
h=1

ΓCh,o∆Ch,f−
1

|E|

H∑
h=1

ΓCh,o ′∆Ch,f

)2

=

=
1

|E|2
∑
f∈F

(
H∑
h=1

∆Ch,f (ΓCh,o − ΓCh,o ′)

)2

=

=
1

|E|2
∑
f∈F

(
H∑
h=1

∆2
Ch,f

(ΓCh,o−ΓCh,o ′)
2
+W

)
(19)

where

W=2

H−1∑
h=1

H∑
h′=h+1

∆Ch,f ∆Ch′,f (ΓCh,o−ΓCh,o ′)
(
ΓCh′,o−ΓCh′,o ′

)
(19) clearly shows that ‖Λo − Λo ′‖2 is directly proportional to∑H
h=1∆

2
Ch,f

(ΓCh,o − ΓCh,o ′)
2

=
∑
Ĉ∈E

∑
Ĉ∈Ĉ ∆

2
Ĉ,f

(
ΓĈ,o − ΓĈ,o ′

)2

,

and hence to do,o ′ , as do,o ′ =
∑
Ĉ∈E

∑
Ĉ∈Ĉ(ΓĈ,o − ΓĈ,o ′)2. ut

A.3 Proofs of Section 4.2.2

Lemma 3 It holds that ZC,f/YC ≤ 1, ∀C, ∀f .

Proof The Lemma can be proved by noting that:

ZC,f
YC

=

∑
o∈D Γ

α
C,o Λo,f∑

o∈D Γ
α
C,o

≤1 ⇐
∑
o∈D

ΓαC,oΛo,f ≤
∑
o∈D

ΓαC,o

The latter inequality holds as its right hand side is an upper bound for the left side,
since Λo,f ≤ 1, ∀f , ∀o according to its probabilistic meaning explained in Proposi-
tion 2. ut

Lemma 4 It holds that XC,o ≥ 0, YC ≥ 0, and ZC,f ≥ 0, ∀C, ∀o, ∀f .

Proof Straightforward since XC,o, YC , and ZC,f are defined in (14), (15), and (16),
respectively, as sums of terms greater than or equal to zero. Indeed, ΓC,o ≥ 0,
Λo,f ≥ 0, ∀C, ∀o, ∀f due to their probabilistic meaning (Def. 2 and Proposition 2,
respectively), and (∆C,f − Λo,f )

2 ≥ 0, ∀C, ∀o, ∀f . ut
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Lemma 5 The feasible region defined by the constraints in (9)-(10) is a convex set.

Proof Immediate as both equality (cf. (9)) and inequality (cf. (10)) constraints are
linear w.r.t. the unknown quantities ΓC,o and ∆C,f of the problem. ut

Lemma 6 The function Q defined in (11) is convex w.r.t. ΓC,o and ∆C,f .

Proof Since Q is twice differentiable w.r.t. both ΓC,o and ∆C,f , to prove the Lemma
it is sufficient to show that:

∂2 Q

∂ Γ 2
C,o

≥ 0, ∀ ΓC,o and
∂2 Q

∂ ∆2
C,f

≥ 0, ∀ ∆C,f

It results that:
∂2 Q

∂ Γ 2
C,o

= α (α− 1) (ΓC,o)
α−2 XC,o ≥ 0

since α > 1 by definition, ΓC,o ≥ 0 according to Def. 2, and XC,o ≥ 0 according to
Lemma 4. Similarly,

∂2 Q

∂ ∆2
C,f

= 2 YC ≥ 0

since YC ≥ 0 according to Lemma 4. ut

Theorem 1 For the problem P defined in (8)-(10), it holds that:

1) Given the current values for ∆C,f , (12) computes the optimal Γ ∗C,o , ∀C, ∀o
2) Given the current values for ΓC,o, (13) computes the optimal ∆∗C,f , ∀C, ∀f

Proof The optimal Γ ∗C,o and ∆∗C,o can be found by means of the conventional La-
grange multipliers method. To this end, we first consider the relaxed problem P ′

obtained by temporarily discarding the inequality constraints from the constraint set
of P (i.e., the constraints defined in (10)). Then, we define the new (unconstrained)
objective function Qλ for P ′ as follows:

Qλ(C, E) = Q(C, E)
∑
o∈D

λ′o

(∑
C′∈C

ΓC′,o − 1

)
+
∑
C∈C

λ′′C

∑
f ′∈F

∆C,f ′ − 1

 (20)

To prove Statement 1) of the theorem, for a fixed assignment of ∆C,f , we com-
pute the optimal Γ ∗C,o by first retrieving the stationary points of Qλ, i.e., the points
for which

∇Qλ =

(
∂ Qλ
∂ ΓC,o

,
∂ Qλ
∂ λ′o

)
= 0
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Thus, we solve the following system of equations:

∂ Qλ
∂ ΓC,o

= α (ΓC,o)
α−1 XC,o + λ′o = 0 (21)

∂ Qλ
∂ λ′o

=
∑
C′∈C

ΓC′,o − 1 = 0 (22)

Solving (21) w.r.t. ΓC,o and substituting the solution in (22), we obtain:

∑
C′∈C

(
−λ′o

α XC′,o

) 1
α−1

= 1 (23)

Solving (23) w.r.t. λ′o and substituting the solution in (21), we obtain:

α (ΓC,o)
α−1 XC,o −

[∑
C′∈C

(
1

α XC′,o

) 1
α−1

]−(α−1)

= 0 (24)

Finally, solving (24) w.r.t. ΓC,o, we obtain a stationary point whose expression is
equal to that given in (12):

Γ ∗C,o =

[∑
C′∈C

(
XC,o

XC′,o

) 1
α−1

]−1

(25)

Since it holds that (i) the stationary points of the Lagrangian function Qλ are also
stationary points of the original function Q, (ii) according to Lemma 5, the feasible
region of P and, hence, the feasible region of P ′ is a convex set, and (iii) according
to Lemma 6, Q is convex w.r.t. ΓC,o, it follows that such a stationary point represents
a global minimum of Q, and accordingly the optimal solution of P ′ with ∆C,f fixed.

Statement 2) of the theorem is easier to prove, as ∆C,f are unconstrained in P ′,
and hence Lagrange multipliers are not needed. Thus, for a fixed assignment of ΓC,o,
the stationary points of the original function Q can be computed as follows:

∂ Q

∂ ∆C,f
=2
∑
o∈D

Γ
α

C,o(∆C,f−Λo,f)=2(∆C,f YC − ZC,f )=0 (26)

which can be easily solved to obtain the same expression given in (13):

∆∗C,f =
ZC,f
YC

(27)

Similarly to the case of Γ ∗C,o, such a stationary point represents a global minimum of
Q, and therefore it represents the optimal solution of P ′ with ΓC,o fixed.

According to the solutions of P ′ reported in (25) and (27), it holds that Γ ∗C,o ≥ 0
and ∆∗C,f ≥ 0, ∀C, ∀o, ∀f , as XC,o ≥ 0, YC ≥ 0, and ZC,f ≥ 0, ∀C, ∀o, ∀f
(Lemma 4); also, ∆∗C,f = ZC,f/YC ≤ 1 according to Lemma 3. Therefore, such
solutions satisfy the inequality constraints in (10) that were temporarily discarded in
order to define the relaxed problem P ′. Thus, they represent the optimal solutions of
the original problem P , which proves the theorem. ut
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Theorem 2 The EM-PCE algorithm (Alg. 2) converges to a local minimum of the
function Q defined in (11) in a finite number of steps.

Proof According to (11), the value of the function Q at the i-th iteration of Alg. 2
(for short, Q(i)) can be expressed as a function of three terms:

Q(i) = f(G(i), D(i), E)

where E is the input projective ensemble, and G(i) = {ΓC | C ∈ C(i)} (resp. D(i) =
{∆C | C ∈ C(i)}) is the set of the object-based (resp. feature-based) representation
vectors of the clusters within the projective clustering solution C(i) recognized as
optimal at the i-th iteration.

According to the derivation of (12) in Theorem 1, the first step of the main cycle
of the algorithm (Line 4) computes the set G(i+1) of object-based representation
vectors at the (i+ 1)-th iteration as follows:

G(i+1) = argmin
Ĝ

f(Ĝ,D(i), E)

where the domain Ĝ of the argmin function is a short-form denoting all sets
of object-based representation vectors that do not violate the constraints given
by the feasible region of the problem P defined in (8)-(10). Thus, it holds that
f(G(i+1), D(i), E) ≤ f(Ĝ,D(i), E), ∀ Ĝ. In particular:

f(G(i+1), D(i), E) ≤ f(G(i), D(i), E) (28)

Similarly, according to the derivation of (13) in Theorem 1, the second step of
the main cycle of the algorithm (Line 5) computes the set D(i+1) at the (i+ 1)-th
iteration as follows:

D(i+1) = argmin
D̂

f(G(i+1), D̂, E)

Thus, it holds that f(G(i+1), D(i+1), E) ≤ f(G(i+1), D̂, E), ∀ D̂; in particular:

f(G(i+1), D(i+1), E) ≤ f(G(i+1), D(i), E) (29)

Combining (28) and (29), we obtain:

f(G(i+1), D(i+1), E) ≤ f(G(i+1), D(i), E) ≤ f(G(i), D(i), E)

Since f(G(i+1), D(i+1), E) = Q(i+1) and f(G(i), D(i), E) = Q(i), we also have:

Q(i+1) ≤ Q(i) (30)

(30) proves that Alg. 2 performs a gradient descent over the functionQ. Furthermore,
since Q is bounded below by 0 (indeed Q ≥ 0), the execution of the algorithm
necessarily terminates after a finite number of steps, when a fixed point (i.e., a local
minimum of Q) is reached, i.e., when Q(i∗) = Q(i∗−1) holds at the i∗-th iteration.

ut
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A.4 Proofs of Section 4.3

Proposition 4 It holds that r(|D|, |F|) > 1 if (|D|+ |F|) /K < 4 I t.

Proof Firstly, it can be noted that:

r(|D|, |F|,K) =
I t K (|D|+|F|)
|D| |F|

>1⇐ I t K (|D|+ |F|)> |D| |F| ⇐

⇐ 2 |D| |F|
|D|+|F|

<2 I t K

that is r(|D|, |F|,K) > 1 when the harmonic mean between |D| and |F| is lower
than 2 I t K. As the harmonic mean is never greater than the arithmetic mean, it
holds that:

2 |D| |F|
|D|+|F|

<2 I t K ⇐ |D|+|F|
2

<2 I t K ⇐ |D|+ |F|
K

<4 I t

which proves the Proposition. ut


