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Abstract

Mass spectrometry (MS) approaches have been recently coupled with advanced data
analysis techniques in order to enable clinicians to discover useful knowledge from
MS data. However, effectively and efficiently handling and analyzing MS data re-
quires to take into account a number of issues. In particular, the huge dimensionality
and the variety of noisy factors present in MS data require careful preprocessing
and modeling phases in order to make them amenable to the further analysis.

In this paper we present MaSDA, a system performing advanced analysis on
MS data. MaSDA has the following main features: i) it implements an approach
of MS data representation that exploits a model based on low-dimensional, dense
time series; ii) it provides a wide set of MS preprocessing operations which are
accomplished by means of a user-friendly graphical tool; i) it embeds a number
of tools implementing various tasks of data mining and knowledge discovery, in
order to assist the user in taking critical clinical decisions. Our system has been
experimentally tested on several publicly available datasets, showing effectiveness
and efficiency in supporting advanced analysis of MS data.
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1 Introduction

Mass Spectrometry (MS) is a powerful analytical technique aimed to extract
interesting biological information from tissue or serum samples [1,2]. Due to
its ability in separating ions of different masses from a sample, a mass spec-
trometer generates a vector of measurements representing the number of ions
that hit the spectrometer detector during small, fixed intervals of time. A mass
spectrum is hence represented as a plot of ion abundance (intensity) versus
the mass-to-charge ratio (m/z). By analyzing mass spectra it is possible to
identify macromolecules contained in the original compounds by associating
(portions of ) proteins to their peak expressions in a spectrum.

Recently, there has been a lot of research concerning advanced analysis on
MS data in order to extract significant, previously unknown information or
“knowledge” from such data. This usually involves various tasks aimed to iden-
tify biological patterns and organize them at different degrees of automation.
Recently, several approaches to MS data management and mining have been
developed. For instance, in [3], data mining techniques have been used to iden-
tify discriminants in a female population, distinguishing ovarian cancers from
healthy conditions. Similarly, data mining techniques have been applied in [4]
for surface-enhanced laser desorption/ionization mass spectrometry (SELDI
MS) data to identify discriminants in rectal cancer diseases. In [5], machine
learning algorithms have been used to identify biomarkers in SELDI MS data
generated on tens of patients to figure out cerebral accident discriminants.

MS data preprocessing has been recognized as a mandatory phase in mass
spectra data analysis. The need for preprocessing mass spectra arises since
the data obtained from a mass spectrometer i) have very large dimensional-
ity and i) are naturally corrupted by various noisy factors. Several research
studies have been proposed on the development of preprocessing steps for MS
data (e.g., [6,7]), and in some cases they have focused on specific steps, such
as baseline subtraction [8-10], peak identification [11,12], and peak alignment
[13,14,9]. Also, there has been recently a growing interest for developing MS
data preprocessing software systems that are able to fulfill certain require-
ments, such as filtering data and highlighting relevant spectra portions w.r.t.
non-relevant ones (e.g., noise), and allowing the user to perform the various
preprocessing stages iteratively and interactively.

1.1 Main contributions

In this paper we present MaSDA — Mass Spectrometry Data Analysis, a sys-
tem for advanced analysis of MS data. The general objective of MaSDA is to



assist the user in discovering useful knowledge from MS data. The discovered
patterns of knowledge might eventually support the user (e.g., the clinician) to
take critical decisions; for instance, if interesting relationships on certain bio-
logical conditions referring to a given disease have been found out by analyzing
MS data, then one might use this new information to design new therapies.

The key idea underlying our approach to MS data analysis, which is imple-
mented in the MaSDA system, is to exploit the temporal information implic-
itly contained in mass spectra and model such data as compact time series.
The proposed MS data representation model is aimed to take some advan-
tages with respect to the traditional count-vector-based approaches to MS
data representation, in particular:

e The problem of high dimensionality in MS data is addressed by identifying
variable-length segments in the time series representing mass spectra. Each
one of these segments is conceived to be comprised of locally tight points,
and is finally mapped to a synthetic information. This enables to drastically
reduce the number of noisy dimensions while preserving relevant features
(i.e., trends in the series profile).

e The critical task of preprocessing MS data is relatively simplified by employ-
ing major existing techniques for similarity detection in time series, which
allow for dealing with mass spectra in a way more robust to noise and suited
to different profiles of the spectra.

Another important aspect of our MS data analysis system is that it offers a
graphical tool for preprocessing the raw mass spectra, with the following main
features:

e Wide set of supported preprocessing operations — it is designed to cover most
of the MS data preprocessing steps that have been recognized as relevant
in the literature;

e Efficiency — it guarantees high performance in MS preprocessing, by adopt-
ing fast algorithms for each step. This allows for efficiently dealing with high
dimensional data;

e Support for user interaction — it enables the user to monitor and control the
whole preprocessing task; in particular, the user can choose which prepro-
cessing steps have to be performed and their execution order, and she/he
can properly set the parameters involved into each step;

e Ease-to-use — it provides a user-friendly graphical interface and a simple
wizard which guides the user in each preprocessing step;

e Web-based access — it makes use of the Java™ Web Start technology, * which
allows for launching the tool directly from the Web.

Besides the functionalities of MS preprocessing and time series based MS

! http://java.sun.com/products/javawebstart /



modeling, our MaSDA system is designed to perform various tasks of MS data
analysis, by employing data mining and knowledge discovery techniques, and
to evaluate and visualize the patterns of knowledge discovered from the input
MS data. As experimentally proved on publicly available datasets, our system
has been shown to be a valid support for the user interested in effectively and
efficiently analyzing MS data.

The rest of the paper is organized as follows. Section 2 introduces our system
conceptually. Section 3 focuses on the MS data preprocessing module and
describes how the involved preprocessing operations are implemented in our
system. Section 4 describes a time series based modeling of MS spectra which
is designed to represent such data into a form particularly convenient for the
further analysis. Section 5 discusses the capabilities of the system for some
tasks of MS data analysis. Finally, Section 6 concludes the paper.

2 Conceptual architecture of the MaSDA system

The MaSDA system consists of five main modules, which are sketched in
Figure 1 and described below:

(1) MS Data Preprocessing: it performs one or more preprocessing steps on
the raw spectra in order to make them amenable to the further analysis
stage. In particular, this module includes at least the following prepro-
cessing operations: range cut, peak smoothing, detection of valid peaks,
baseline correction, quantization, and normalization.

(2) Time Series based MS Data Modeling: this module transforms the pre-
processed MS data into time series, using a model conceived to maintain
the significant trends (peak profiles) while reducing the data dimensions.

(3) MS Data Analysis: it includes a number of submodules each performing
a certain task of knowledge discovery, such as cluster analysis, frequent
pattern discovery, data summarization, and so on. The input for this
module is the preprocessed spectra, which is of the form either original
(output of module 1) or based on time series (output of module 2).

(4) Pattern Evaluation: it is in charge of assessing the validity of the discov-
ered knowledge patterns.

(5) Knowledge Presentation: this module finally presents the discovered knowl-
edge by using visualization tools.
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Fig. 1. The overall conceptual architecture of the MaSDA system

Data Summarization

3 Pre-analysis processing of MS data

A raw spectrum generated by a mass spectrometer is substantially a combi-
nation of three components: the true signal, a baseline signal, and noise [6];
in particular, the true signal contains biological information, whereas the base
intensity level (baseline) varies from point to point across the m/z axis, so
that intensity values that are under the baseline represent ground noise and
should be hence filtered out. Separating and reconstructing such individual
components from a raw spectrum is a hard task, since their analytical forms
are not known. Thus, spectra usually need to be subject to one or more pre-
processing operations, in order to make them amenable to further analysis
phases.

Since the variety of spectrometry platforms, experimental conditions and clin-
ical studies, there exists a number of preprocessing operations (see, e.g., [6,7]).
While there has not been shared agreement about a preprocessing scheme, a
reasonable list of preprocessing steps on mass spectra can be given as follows:

e calibration, which is used to map the observed time of flight into the inferred
mass-to-charge ratio;

e filtering or denoising, which aims to reduce random noise generated by
electronic or chemical causes;
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Fig. 2. A sample screenshot of the MaSDA tool for MS preprocessing

e baseline correction, which is in charge of recognizing and filtering out the
baseline signal of mass spectra;

e normalization, which makes peak intensities understandable over a uniform
range;

e peak detection, which is in charge of locating specific proteins or peptides on
the identified locations on the m/z axis and typically involves an assessment
of the spectra local maxima and their signal-to-noise ratio (S/N);

e peak quantification, which represents each detected peak by means of a con-
cise information (e.g., peak heights or areas);

e peak matching/alignment, which aims to recognize the peaks in different
samples that correspond to the same biological molecule.

In this section we describe the capabilities of the MaSDA module for MS
preprocessing, we called MSPtool. MSPtool is a Java™ based tool that imple-
ments most of the MS preprocessing operations discussed above (Figure 2).
This tool offers its features visually in order to assist the user in performing
an MS preprocessing task, i.e., observing the raw spectra, selecting an appro-
priate sequence of preprocessing steps, and choosing the parameter setting for
each of the selected preprocessing steps.

MSPtool is able to deal with various formats storing the raw spectrum/spectra
to be preprocessed, including plain-text files, comma separated values files
(CSV), and XML data. Also, the tool allows the user to graphically repre-
sent preprocessed spectra, which is useful to visually explore (and compare)
the spectra profiles before and after the preprocessing step. Figure 3 shows a
screenshot of the last step of the preprocessing wizard, which reports a sum-
mary of the preprocessing setting; in this step, it is also possible to change the
order of the selected preprocessing operations.
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Fig. 3. Preprocessing wizard - summary of the preprocessing settings

It should be noted that, although MSPtool has been originally designed as a
standalone application, we have also provided a Web-based version using the
Java™ Web Start technology. This feature of the tool is mainly motivated by
our intention to make MSPtool publicly available and to simplify the processes
of deployment and upgrade of the tool. 2 In the following, we describe the main
steps of MS data preprocessing involved into MSPtool.

Range cut. This step performs a cut of the m/z range of the spectra, in
order to filter out those portions of spectra that do not contain relevant bio-
logical information.

Peak smoothing. Peak smoothing falls into the category of peak detec-
tion/quantification operations. This step aims to smooth the peak profiles in
the spectra and to reconstruct the theoretical Gaussian profile of the peaks.
An ideal peak profile is comprised of two parts: a monotonic ascending side
and a monotonic descending side. We call M-peak a spectrum peak having
its intensity higher than both the previous and the next point, i.e., a local
maximum in the spectrum (Figure 4 (a)—(b)).

The peak smoothing algorithm has a parameter w,, peak amplitude, which is a
function of the mass spectrometer resolution. This parameter can be initially
set to the average width of peaks in the spectrum, or modified according to

2 A beta version of the MS data preprocessing tool is available at the following
Web address: http://polifemo.deis.unical.it/~gtradigo/jnlp /msptool/
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Fig. 4. Peak smoothing: (a) example M-peaks and (b) the corresponding ideal peak;
(c) three local M-peaks and (d) the resulting profile after smoothing

the data features. Basically, the algorithm works as follows: first, it detects all
the M-peaks in the spectrum; each M-peak (except the last one) is compared
with the next M-peak. If the distance between these two M-peaks is lower than
w,/2 then either a descending phase or an ascending phase can occur, and the
spectrum is modified such that the resulting peak has the expected pseudo-
Gaussian shape for both the ascending and the descending sides (Figure 4

(¢)~(d))-

Valid peaks recognition. Valid peaks recognition is a further step of peak
detection/quantification. This step aims to recognize as valid peaks the local
maxima into a mass spectrum that satisfy specific requirements. In particular,
the algorithm for valid peaks recognition implemented into MSPtool takes
into account the signal-to-noise ratio (S/N) and works as follows: for each
spectrum, the S/N at each local maximum of the spectrum is computed as the
ratio of the intensity at the maximum to the local noise estimate; then, only the
local maxima having S/N greater than a user-defined threshold (multiplicative
factor) are recognized as valid peaks. The non-valid peaks in a spectrum are
discarded from the further analysis.

Baseline correction. This step aims to identify the baseline signal in the
spectra and filter out all spectra intensity values below the baseline. The user
can choose a function that approximates the baseline (i.e., the baseline func-
tion) and setting the parameters for each function. MSPtool offers the fol-
lowing baseline functions: linear function, logarithmic function, exponential
function and piecewise linear function. The first three functions approximate
the baseline as a linear, logarithmic and exponential function, respectively,
whereas the definition of the piecewise linear function is as follows. The m/z
range of each spectrum is divided into a user-defined number of equally-sized
windows. The final piecewise linear function is composed by a number of linear
functions, each of them properly defined according to the associated window.
For each window, the corresponding linear function is computed by solving a
line fitting problem to the local minima in the window.



Quantization. This step performs a quantization of the spectra, i.e, a dis-
cretization of the original intensity values according to specific quantization
levels. A non-uniform quantization model is used in the MPStool in such a
way that two or more ranges in the intensity axis are identified and subject
to different fine-grained quantization.

Normalization. Spectra normalization changes spectra shapes by trans-
forming original intensity values into new ones proportionally calculated ac-
cording to a certain fixed range. MSPtool implements various normalization
techniques, including z-normalization and min-max normalization. The former
subtracts the mean over all the spectra intensities from each intensity value
and then divides this difference by the standard deviation over all the spectra
intensities; the latter scales the intensity values such that, for each m/z and
over all the spectra, the smallest intensity value becomes zero and the largest
intensity becomes one.

4 Time series based modeling of MS data

A (preprocessed) mass spectrum is a sequence of paired values S = [((m/2)1, I1),
..o, ((m/2)n, I,)], where each pair is comprised of a mass-to-charge-ratio value
and the associated intensity value. A mass spectrum so defined can be triv-
ially modeled as a time series T = [(z1,t1), ..., (Zn, t,)] Whose z; correspond
to the spectrum intensity values I;, and the time steps t; correspond to the
values (m/z);. Indeed, the notion of time implicitly lies in the sequence of
mass-to-charge values.

Derivative time series Segment Approximation (DSA). Time series
representing mass spectra are typically high dimensional data. Thus, it is desir-
able to model such time series into a compact representation that synthesizes
the significant variations in the time series profile.

For this purpose, we exploit a representation scheme called DSA (Derivative
time series Segment Approximation), which has been proposed in [15,16]. Us-
ing the DSA model, a time series is transformed into a new, smaller sequence.
The key idea is to approximate a series by producing a list of segments that
follow the main trends in the series. Each segment summarizes a portion of the
series that contains points having the same profile. Once the list of segments
has been generated, each of these segments is finally represented by a pair of
numerical values, namely the slope of the line containing the segment and the
timestamp of the last point in the segment.
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Fig. 5. Illustration of DSA. (top) A time series and its derivative version. (bottom)

The final DSA sequence computed by segment approximation of the derivative time

series

It should be emphasized that the number p of segments produced by DSA
is usually much smaller than the number of original points in the series (i.e.,
p < n). This enables a significant increment of performance efficiency for the
various data analysis algorithms that will be performed on DSA representa-
tions of time series.

Figure 5 shows the application of DSA on a sample time series. We can observe
the ability of DSA in representing a typical time series with a new sequence
reflecting the main trends of the original one. Also, it can be noted that the
number of segments produced is very small and a good compression level has
been reached. In the following we give a brief, informal description of DSA,
whereas the interested reader can find further details in [15,16].

Given any time series corresponding to a mass spectrum, a DSA representation
is accomplished in three main steps:

(1) Derivation, which computes the first derivatives of the points in the orig-
inal series;

(2) Segmentation, which identifies a relatively small number of segments;

(3) Segment approzimation, which finally obtains a lower dimensional still
fine-grained representation of the original series.

The derivation step transforms an original series T' = zq,...,x, into a new
one T' = [iy,...,4,] containing the first derivative estimates of all the points
in T. The objective of this step is to capture the main trends of the raw
series, which enables an accurate segmentation of the series. To compute 7,



we use an estimation model that is sufficiently general (i.e., independent on the
underlying data distribution model) and still enough robust to outliers [15,16].

The segmentation step applies to the derivative series T in order to identify
contiguous subsequences (segments) in 7. Each of these segments is designed
to aggregate subsequent data points having very close derivatives. To derive
a compact, feature-rich representation of the original time series, we adopt a
sliding-window scheme, which is able to identify variable-length segments and
works as follows:

(1) It starts from the first point in T and proceeds by scanning all the points
in the series.

(2) Given a sequence s; of contiguous points identified at a certain iteration,
the next point in the series is recognized as belonging to s; if and only if
the difference between its numerical value and the mean value of all the
points within s; does not exceed a certain threshold; otherwise, if such a
difference is greater than the threshold, the subsequence s; is identified
as a segment, and the process repeats starting from the next point not
yet considered.

The segmentation threshold required by the sliding-window algorithm is es-
timated globally with respect to a given time series, i.e., by considering the
variance over the points in the derivative series.

In the final step of DSA, each of the detected segments is approximated with
a synthetic information, which is a pair formed by the timestamp of the last
point within the segment and an angle that explains the average slope of the
portion of time series bounded by the segment.

5 Using the MaSDA system for organizing MS data

A major task of MS knowledge discovery consists in classifying spectra in
order to discriminate them on the basis of their biological information (e.g.,
healthy or diseased individuals). To cope with huge dimensionality and fre-
quently occurring noise in MS data, this task requires careful preprocessing
and modeling of the data. However, the organization task is particularly diffi-
cult when a-priori knowledge on the predefined set of categories or a training
set of positive/negative examples from data is poorly or not available at all.
In this case, the goal is to infer an organization of a collection of MS data into
meaningful groups (clusters), based on interesting relationships discovered in
the data. Clustering of MS data finds natural application to many real MS
scenarios, since the various pathologic states from clinical studies might re-
quire to be discovered in an unsupervised way. In the following we describe
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Fig. 6. A screenshot of the MaSDA tool for clustering MS data
how MaSDA can be used to organize MS data by a task of cluster analysis.

Figure 6 shows a screenshot of a Java™ based tool embedded in MaSDA for
clustering MS data (available from the OvarianCancer dataset [3]). On the
left of this figure, we can observe a number of component panels devoted to
the configuration of a clustering experiment, which involves the choice of the
preprocessing (smoothing) function, the model of cluster representative, the
method of representation and similarity between series, and the algorithm of
clustering. On the right of the figure, each of the output clusters and relat-
ing representative can be explored using different choices of visualization; the
clustering results can be also saved into a file for further reloading. Also, we
can observe in the menu bar the presence of a command for launching the
preprocessing tool (MSPtool) previously described. The interested reader is
referred to [17,15,16] for a detailed description of the smoothing functions,
the similarity methods, the clustering algorithms and the evaluation criteria
implemented in the clustering tool and used in experiments.

Another important task allowed by MaSDA is data summarization. Given a set
of MS time series, the objective here is to generate a summary, or prototype
sequence that is able to capture the most relevant features of the series in
the given set. Since the input series may have different length and scales, the
task is not trivial (i.e., we cannot directly resort to the computation of an
“average” time series); rather, a concise representation is desirable to include
the significant trends in the set as well as to filter out irrelevant information
[15,16]. Figure 7 shows an example of summarization of a certain set of time
series data.
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The MaSDA system has been tested on various real MALDI/SELDI-TOF MS
data obtained using different clinical studies under different mass spectrom-
etry platforms and experimental conditions; in particular, some of the used
collections are publicly available from authoritative sources (e.g., the NCI’s
Center for Cancer Research, other ones have been provided by the proteomics
laboratory at the University of Catanzaro.

A major goal of the experimentation conducted on MS data by using MaSDA
was to identify groups of subjects that show similar characteristics according
to the expected pathological states (e.g., in the Prostate dataset [18] differ-
ent cancer or benign conditions at various levels of PSA). Moreover, in this
context a challenge is represented by the discovery of the proteomic profiles
that distinguish disease-related or cancer conditions from the healthy ones.
For instance, some discriminatory patters might be found out around early
m/z values, other ones might be detected according to sequences of peaks at
a certain intensity level. Intuitively, this issue can be more easily addressed
by exploiting our time-series-based modeling of MS data: indeed, the compact
representation that is substantially comprised of relevant features in the data
(while discarding various noisy factors) favors the identification of significant
patterns in the spectra.

6 Conclusion

We presented the MaSDA system for advanced data analysis and knowledge
discovery from MS data. This system features a number of graphical tools that
enable the user to preprocess and model the mass spectra, to perform data

3 http: //home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
4 http://proteomics.unicz.it



mining tasks, and to evaluate and visualize the discovered knowledge patterns.
In particular, MaSDA implements an approach to MS data representation that
exploits a suitable model based on low-dimensional, dense time series. Using
this MS data representation coupled with different available choices of pre-
processing settings, MS data can be effectively and efficiently managed and
analyzed by employing data mining and knowledge discovery methods, in-
cluding cluster analysis and classification, frequent pattern extraction, data
summarization. The usefulness of MaSDA has been experimentally demon-
strated in clinical applications, such as the unsupervised learning (clustering)
of disease-related conditions for early detection of cancers.
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