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ABSTRACT

Receivable financing – the process whereby cash is advanced to

firms against receivables their customers have yet to pay – is a

well-established funding source for businesses. In this paper we

present a novel, collaborative approach to receivable financing: un-

like existing centralized approaches where the financing company

handles each request individually, our approach employs a network

perspective where money flow is triggered among customers them-

selves. The main contribution of this work is to provide a principled

formulation of the network-based receivable-settlement strategy,

and show how to effectively achieve all algorithmic challenges

posed by the design of this strategy. Extensive experiments on real

receivable data attest the effectiveness of the proposed methods.
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1 INTRODUCTION

A receivable is a debt owed to a company by its customers for goods

or services that have been delivered or used but not yet paid for.

Receivable Financing (RF) is a service for creditors to fund cash

flow by selling accounts receivables to a funder or financing com-

pany. The funder anticipates (a proportion of) the receivable amount

to the creditor, deducting a percentage as a fee for the service.

Receivable financing mainly exists to shorten the waiting times

of receivable payment. These typically range from 30 to 120 days,

which means that businesses face a nervous wait as they cannot

effectively plan ahead without knowing when their next payment

is coming in. Cashing anticipated payment for a receivable gives a

business instant access to a lump sum of capital, which significantly

eases the cash-flow issues associated with receivables. Another pro

is that funders typically manage credit control too, meaning that

creditors no longer need to chase up debtors for receivable payment.

RF has traditionally been provided by banks and financial insti-

tutions. The last few years have however witnessed the emergence

of RF digital platforms, e.g., companies such as the US BlueVine,

Fundbox, and C2FO, or the British MarketInvoice. While digital fun-

ders are rapidly growing, they are still far from saturating the huge

potential of the commercial credit market.
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Figure 1: Client/server (left) vs. network-based (right) receivable financ-

ing. In the former scenario the funder handles each request by itself, which

means anticipating a total amount of 3200. The network-based scenario en-

ables customers to pay each other. Assuming account balances for A, B, C of

0, 300, 0, respectively, Receivables 2, 3, 4 are settled without involving the fun-

der, which has thus to anticipate the amount of Receivable 1 only (600). This

means more liquidity and reduced risk for the funder, and a larger saving for

the customers (as network-based receivable financing requires smaller fees).

A novel, network-based perspective. The approach used by ex-

isting funders is client-server : the funder acts as a centralized server

that handles each request for a receivable to be funded individually.

A major limitation of the centralized strategy lies in its incapa-

bility of dealing with simultaneous requests from customers of the

same financing service. In other words, client-server RF completely

disregards the fact that receivables for which the financing com-

pany is requested constitute a network where the same customer

may act as a creditor or a debtor of different receivables. In this

paper we propose a novel approach to receivable financing where

this network perspective is profitably exploited to trigger a money

flow among customers themselves. In this setting the funder is able

to identify a proper subset of receivables such that the involved

customers are autonomously able to pay each other, thus activating

a network-based settlement of receivables that brings substantial

benefits to both the funder and the customers (Figure 1).

The pros of network-based RF for the funder are availability of

more liquidity (one of the main sources of income for financing

companies), as it no longer has to provide cash anticipation for each

request, and reduced risk of exposure to payment delays or credit

losses. Such benefits in turn allow the funder to request smaller

fees for the receivables that are handled through the network-based

strategy: this way the network-based approach turns out to be

appealing to the customers too. A further advantage for customers

is the reduced time and effort in establishing the service, due to less

bureaucracy and lighter risk-assessment procedures by the funder.

A crucial aspect is to make customers aware that an implicit do-

ut-des principle regulates the approach, in which customers accept

to pay receivables that are selected by the system, and for which

they play as debtors, possibly earlier than they would otherwise do.

Customers are free to deny their consensus to earlier payments.

However, they are discouraged to opt for this choice: as explained

in more detail in Section 2, our network-based RF approach imple-

ments an ad-hoc mechanism to guarantee that in-advance payment

facilitates the arrival of their turn to act as creditors.
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Contributions and roadmap. In this paper we present a novel,

network-based approach to receivable financing. To the best of our

knowledge, this network perspective has never been employed so

far in RF services. The main focus of this work is on the algorithmic

challenges posed by the design of this novel receivable-settlement

methodology. We believe our work is a well-suited example of

how a real-world problem from a specific application domain (i.e.,

finance) requires non-trivial algorithmic and theoretical effort to

be effectively solved in practice.

Our main contributions can be summarized as follows:

• We devise a novel, network-based approach to receivable

financing (Section 2).

• We provide a principled formulation of the network-based

receivable-settlement strategy in terms of a novel optimiza-

tion problem, while also showing the NP-hardness of the
problem (Section 3).

• We derive interesting theoretical conditions to bound the

objective-function value of a set of solutions to the prob-

lem, and exploit them to design an exact branch-and-bound

algorithm (Section 4.1).

• We devise a more efficient algorithm, based on a further

optimization problem, and its characterization in terms of

NP-hardness and connection with Knapsack-like problems

(Section 4.2).

• As our ultimate proposal to handle real-world problem in-

stances, we design a hybrid algorithm that profitably com-

bines the principles of both the exact algorithm and the faster

one (Section 4.3).

• Wepresent an extensive evaluation on a real dataset of receiv-

ables. Results demonstrate the effectiveness of the proposed

methods in practice (Section 5).

Section 6 overviews related work, and Section 7 draws conclusions.

2 PRELIMINARIES

We consider a scenario where a funder has a set of customers who

submit receivables requesting for cash anticipation. Our funder

adopts a network-based approach for receivable settlement: i.e, the

funder does not handle each request individually, but attempts (on

a daily basis) to automatically identify a subset of receivables such

that the involved customers can autonomously pay each other.
1

LetU be the set of customers and R the set of receivables that

have been submitted by the customers.

Receivables. A receivable R ∈ R has the following attributes:

• amount(R) ∈ R: amount of the receivable;

• creditor (R) ∈ U: customer being the payee of the receivable;

• debtor (R) ∈ U: customer being the payer of the receivable;

• insertdate(R): date the receivable was added to the system;

• duedate(R): date on which the payment falls due;

• li f e(R) ∈ N: the maximum number of days the network-

based RF service is allowed to try to settle the receivable.

A receivableR is said active for creditor (R), and passive fordebtor (R).

1
We assume a single-funder scenario: receivables and customers come from the same

funder. Funders have no visibility on receivables and customers of other companies.

Customers. Customers are assigned a dedicated account by the

funder, which is used to pay passive receivables or get paid for active

receivables.Moreover, customersmay perform deposits/withdrawals

on/from their account. Such operations trigger external money

flows, which do not derive from receivable settlement. The desider-

atum to keep the system in a collaborative equilibrium is that, if

a customer withdraws money from her account, this operation

should not increase the customer’s marginal availability to cash in

more receivables through the RF service. Conversely, if a customer

deposits money on her account, this operation should obviously

increase her ability to pay more receivables. To take into account

these principles, we keep track of two different balances in the

account of customer u, and require such balances to be limited by a

floor and a cap (which are set on a customer basis during sign up).

As a result, every customer u ∈ U is assigned the attributes:

• blr (u) ∈ R: receivable balance of u’s account, i.e., the sum of

all receivablesu has got paid minus the sum of all receivables

u has paid through the RF service over the wholeu’s lifetime;

• bla (u) ∈ R: actual balance of u’s account, corresponding
to the receivable balance blr (u), increased by money from

deposit operations and decreased by withdrawals;

• cap(u) ∈ R: upper bound on the receivable balance of u’s
account; requiring blr (u) ≤ cap(u) at any time avoids unbal-

anced situations where a customer utilizes the service only

to get money without paying passive receivables;

• f l(u) ∈ R: lower bound on the actual balance of u’s account;
typically, f l(u) = 0, but in some cases negative values are

allowed, meaning that some overdraft is tolerated.

Network-based RF in action. The execution flow of our service

is as follows. The creditor submits a receivable R to the service,

setting li f e(R), i.e., the number of days the receivable can last in the

system. If that period expires with no settlement, the creditor gets

the receivables back, possibly to resort to other financing services.

After insertion, the system asks debtor (R) for confirmation, i.e.,

the consensus to pay the receivable anytime between insertdate(R)
andduedate(R), through the money in her account. A specific mech-

anism is employed to maintain the desired equilibrium where cus-

tomers autonomously pay each other as far as possible: the debtor

is encouraged to accept paying a receivable before its duedate to
gain operability within the service, so as to get her (future) active

receivables settled more easily. Indeed, according to the constraint

blr (u) ≤ cap(u), the more the receivables paid by u through the

network-based RF service, the further blr (u) remains from cap(u)
and the higher the chance for u to have her active receivables paid.

A customer can deny confirmation for a receivable if her current

economic situation does not comply with in-advance payments.

Once debtor (R) has given her consensus, R is added to the set R

of current receivables. The system attempts to settleR during the pe-

riod [insertdate(R),min{insertdate(R) + li f e(R),duedate(R)}], ac-
cording to a proper strategy (see Sections 3-4). If no settlement hap-

pens, the receivable is returned to the creditor; otherwise,amount(R)
is transferred from debtor (R)’s account to creditor (R)’s account.2

2
For the sake of simplicity and without any loss of generality, we assume that the fee for

the settlement of receivable R (corresponding to a small percentage of amount (R))
is paid by creditor (R) to the funder of the RF service through a different channel.



3 PROBLEM DEFINITION

The key problem in the design of a network-based RF service is

the definition of an effective strategy to properly select a subset of

receivables to be settled. In our context we assume that receivable

settlement works on a daily basis. It runs offline at the end of any

working day t , taking as input the set of receivables that are valid at

time t , i.e., R(t) = {R ∈ R | t ∈ [insertdate(R), min{insertdate(R)
+li f e(R),duedate(R)}]}. Such receivables describe a multigraph,

where arcs correspond to receivables, and nodes correspond to the

customers spanned by receivables. The multigraph at hand, termed

S-multigraph, is directed, weighted, and node-attributed:

Definition 3.1 (S-multigraph). Given a set R(t) of receivables
active at time t , the S-multigraph induced by R(t) is a triple G =
(V, E,w), whereV is a set of nodes, E is amultiset of ordered pairs

of nodes, i.e., arcs, andw : E → R+ is a function assigning (positive

real) weights to arcs. Each arc (u,v) ∈ E models the case “u paysv”,
i.e., it corresponds to a receivable R ∈ R(t) where u = debtor (R),
v = creditor (R), and w(u,v) = amount(R). Each node v ∈ V is

assigned attributes blr (u), bla (u), cap(u), and f l(u).

The objective in our network-based settlement is to select a set

of receivables, i.e., arcs of S-multigraph G, so as to maximize the

total amount of the selected receivables. This objective is desirable

from the point of view of both the funder and its customers. Indeed,

the larger the amount of settled receivables, the larger the profit for

the funder. Similarly, a larger receivable amount settled through the

network-based RF service leads to larger savings for the customers,

who would otherwise resort to more expensive services, such as

traditional RF. The selected receivables should meet the following

constraints for every customer u spanned by them: (1) the resulting

blr (u) and bla (u) should remain consistent with cap(u) and f l(u)
(i.e., blr (u) ≤ cap(u), bla (u) ≥ f l(u)), and (2) u should be the payer

of at least one selected receivable and the payee of at least another

selected receivable. Constraint (2) is motivated by the marketing

choice of avoiding that a customer is only selected to be payer of

receivables on a day. It is believed that showing the clients that

any day they are selected to pay a receivable, they also cash at

least another receivable as creditors, is essential to consolidate their

satisfaction and engagement with the service. At the same time,

disallowing a customer to be a payee-only serves the purpose of

further guaranteeing the aforementioned do-ut-des principle.

The above principles are formalized into the following optimiza-

tion problem, while Figure 2 depicts a (simple) problem instance.

Problem 1 (Max-profit Balanced Settlement). Given an S-
multigraph G= (V, E,w), find a multisubset E∗ of arcs so that

E∗ = arg max

ˆE⊆E

∑
e ∈ ˆE

w(e) subject to(∑
(v,u)∈ ˆE

w(v,u) −
∑
(u,v)∈ ˆE

w(u,v)
)
∈ [f l(u)−bla (u), cap(u)−blr (u)] , (1)

|{(u,v) | (u,v) ∈ ˆE}| ≥ 1, and |{(v,u) | (v,u) ∈ ˆE}| ≥ 1, (2)

∀u ∈ V( ˆE) = {u ∈ V | (u,v) ∈ ˆE ∨ (v,u) ∈ ˆE}.

Figure 2: An instance of theMax-profit Balanced Settlement problem.

Nodes are labeled with their balances (in this example blr = bla ), and f l -cap
ranges (square brackets). Arcs are assigned the amount of the corresponding

receivables. The arcs depicted with full lines form the optimal solution.

Theorem 3.2. Problem 1 is NP-hard.

Proof. We reduce from the well-known NP-hard Subset Sum

problem [11]: given a set S of positive real numbers and a further

real number B > min{x | x ∈ S}, find a subset S∗ ⊆ S such that the

sum of the numbers in S∗ is maximum and no more than B. Given
an instance ⟨S = {x1, . . . ,xk },B⟩ of Subset Sum, we construct

a Max-profit Balanced Settlement instance composed of a

multigraph G = (V, E,w) having two nodes, i.e., u and v , one
arc from v to u with weight equal to some positive real number

ϵ < min{x | x ∈ S}, and as many additional arcs from u to v as

the numbers in S , with the weight on each arc ei from u to v being

equal to the corresponding number xi ∈ S . Moreover, we let u and

v have the following attributes: blr (u) = bla (u) = 0, cap(u) = ϵ ,
f l(u) = −

∑
(u,v)∈E w(u,v), blr (v) = bla (v) = ϵ , cap(v) = B, and

f l(v) = −ϵ . The optimal solution E∗ for theMax-profit Balanced

Settlement instance G possesses the following features:

• E∗ , ∅, as there exists at least one non-empty feasible solution

whose objective function value is larger than the empty solution,

e.g., the solution {emin , (v,u)}, where emin = argmini ∈[1..k ]w(ei )
(asw(v,u) = ϵ < mini ∈[1..k ]w(ei ) by construction).

• Arc (v,u) will necessary be part of E∗, otherwise Constraint (2)

in Problem 1 would be violated.

• Apart from (v,u), E∗ will contain all those arcs (u,v) that (i)
fulfill Constraint (1) in Problem 1, and (ii) the sum of their weights

is maximized. The constraints to be satisfied on node u are:

w(v,u) −
∑
(u,v)∈E∗ w(u,v) ∈ [f l(u) − bla (u), cap(u) − blr (u)],

that is ϵ −
∑
(u,v)∈E∗ w(u,v) ∈

[
−
∑
(u,v)∈E w(u,v), ϵ

]
, which is

always satisfied, as ϵ ∈ (0,min(u,v)∈E w(u,v)).
The constraints to be satisfied on node v are instead:∑
(u,v)∈E∗ w(u,v) −w(v,u) ∈ [f l(v) − bla (v), cap(v) − blr (v)],

that is

∑
(u,v)∈E∗ w(u,v) − ϵ ∈ [−2ϵ,B − ϵ]. The constraint∑

(u,v)∈E∗w(u,v)−ϵ ≥−2ϵ is always satisfied, as allw(u,v) and ϵ
are ≥ 0. The constraint

∑
(u,v)∈E∗ w(u,v)−ϵ ≤ B−ϵ corresponds

to

∑
(u,v)∈E∗ w(u,v) ≤ B, i.e., the Subset Sum constraint.

As a result, the optimal E∗ of the constructed Max-profit Bal-

anced Settlement instance contains arcs whose sum of weights

is maximum and ≤ B, which corresponds to the optimal solution

to the original Subset Sum instance. The theorem follows. □

4 ALGORITHMS

4.1 Exact algorithm

The first proposed algorithm forMax-profit Balanced Settle-

ment is a branch-and-bound exact algorithm, dubbed Settlement-bb.



Figure 3: Tree-like representation of the Max-profit Balanced Settle-

ment search space considered in the Settlement-bb algorithm.

Algorithm 1: Settlement-bb

Input: An S-multigraph G = (V, E, w )
Output: A multiset E∗ ⊆ E

1: T := tree-like representation of 2
E

2: X ← {root of T}, LBmax ← 0

3: while X contains some non-leaf tree-nodes do

4: X ← extract (and remove) a non-leaf tree-node from X

5: U BX ← upper bound on the solutions spanned by X {Alg. 3}

6: if U BX ≥ LBmax then

7: LBX ← lower bound on the solutions spanned by X {Alg. 2}

8: if LBX = U BX then E∗ ← arcs(X ) and stop the algorithm

9: LBmax ← max{LBmax , LBX }
10: add all X ’s children to X

11: L ← {leaf X ∈X |arcs(X ) satisfy constraints of Problem 1}

12: E∗ ← argmaxarcs (X ):X ∈L
∑
e∈arcs (X )w (e)

Search space. Given an S-multigraph G = (V, E,w), the search
space of Max-profit Balanced Settlement corresponds to the

set 2
E
of all possible (multi)subsets of arcs. The Settlement-bb al-

gorithm represents this search space as a binary tree T with |E |+1

levels, where each level (except for the root one) logically repre-

sents an arc e ∈ E for which a decision has to be taken, i.e., include

the arc or not in the output solution (Figure 3). Correspondence

between arcs and levels comes from some ordering on the arcs (e.g.,

by non-increasing weight, as in Section 4.3). A path from the root to

a leaf represents a complete individual solution
ˆE ∈ 2E (where a de-

cision has been taken for all arcs). A non-leaf tree-node
3
represents

a set of solutions: those corresponding to all possible decisions for

the arcs not in the path from the root to that non-leaf node.

Search-space exploration. The Settlement-bb algorithm explores

the tree-like search space (according to some visiting strategy, e.g.,

bfs or dfs) by exploiting a lower bound and an upper bound on

the set of all solutions identified by a non-leaf tree-node it has

visited, and keeping track of the largest lower-bound among all the

ones computed so far. Whenever the upper bound of a tree-node

is smaller than the largest so-far lower bound, that node and the

whole subtree rooted in it can safely be discarded. The visit stops

when all tree-nodes have been visited or pruned, and the optimal

solution E∗ is selected among all survivor leaves, specifically as

the one satisfying all the constraints of Max-profit Balanced

Settlement and exhibiting the maximum objective-function value.

Note that, during the visit of the search space, intermediate solu-

tions whose partial decisions make them (temporarily) infeasible

are not discarded, because such solutions may become feasible later

on. The general scheme of Settlement-bb is outlined as Algorithm 1.

A specific visiting strategy of the search space (e.g., bfs or dfs) can

3
We use the term “tree-node” to refer to the nodes of the tree-like search space (to

distinguish them from the nodes of the input S-multigraph).

Algorithm 2: Settlement-bb-lb

Input: An S-multigraph G = (V, E, w ), two multisets E+X ⊆ E, E
−
X ⊆ E

Output: A multiset
ˆE ⊆ E \ E−X

1: C← cycles of multigraph G− = (V, E \ E−X , w ) {cf. [8]}

2:
ˆE ← ∅, ˆC← ∅

3: while C , ∅ ∧ E+X ⊈ ˆE do

4: C← {C ∈ C | ˆE ∪C meets Constraint (1) of Problem 1}

5: C ← cycle in C minimizing [ |C∩(E+X \
ˆE)|×

∑
e∈C\ ˆE w (e)]

−1

6:
ˆC← ˆC ∪ {C }, C← C \ {C }, ˆE ← ˆE ∪C

7: while C , ∅ do

8: C← {C ∈ C | ˆE ∪C meets Constraint (1) of Problem 1}

9: C ← cycle in C maximizing

∑
e∈C\ ˆE w (e)

10: C← C \ {C }, ˆE ← ˆE ∪C
11: if E+X ⊈ ˆE then

ˆE ← ∅

be implemented by properly defining the way of choosing the next

tree-node to be processed (Line 4). A crucial point in Settlement-bb

is the definition of lower bound and upper bound. We discuss this

in the remainder of the subsection.

Lower bound. For a tree-node X at level i of T , let EX denote the

arcs for which a decision has been taken, i.e., arcs corresponding to

all levels from the root to level i . Let also EX be partitioned into E+X
and E−X , i.e., arcs included and not included in the current (partial)

solution. A lower bound on the solutions spanned by (the subtree

rooted in) X can be defined by computing any feasible solution
ˆE

toMax-profit Balanced Settlement, subject to the additional

constraint of containing all arcs in E+X and no arcs in E−X .

To compute such a feasible solution, we aim at finding the set

C of cycles of the multigraph induced by the arc set E \ E−X , and

greedily selects cycles based on their amount, as long as they meet

Constraint (1) of Max-profit Balanced Settlement. The intu-

ition behind this strategy is twofold. First, a solution composed of

a set of cycles always satisfies the other constraint of the problem,

as every node of a cycle has at least one incoming arc and one out-

going arc. Moreover, cycle enumeration is a well-known problem,

for which a variety of algorithms exists. As a trade-off between

effectiveness, efficiency and simplicity, we employ a variant of the

classic Johnson’s algorithm [10] that works on multigraphs [8].

More in detail, the algorithm at hand is dubbed Settlement-

bb-lb and outlined as Algorithm 2. To guarantee the inclusion

of the arcs E+X , the greedy cycle-selection step (Lines 8–11) is

preceded by a covering phase (Lines 3–7), whose goal is to find

a first subset
ˆC ⊆ C of cycles that (i) cover all arcs in E+X , i.e.,

E+X ⊆
⋃
C ∈ ˆCC , (ii) maximize the total amount of the cycle set,

i.e.,

∑
e ∈

⋃
C∈ ˆCC w(e), and (iii) remain feasible forMax-profit Bal-

anced Settlement. This corresponds to a variant of the well-

knownWeighted Set Cover problem, where E+X represents the

universe of elements, while the cycles in C represent the covering

sets. The covering phase of Settlement-bb-lb is therefore tackled

by adapting the classic greedy (1 + log |E+X |)-approximation algo-

rithm [3] forWeighted Set Cover, which iteratively selects the

set minimizing the ratio between the set cost and the number of

uncovered elements within that set, until all elements have been

covered. Our adaptation consists in (i) defining the cost of a set as

the inverse of the amount of the corresponding cycle (computed by

discarding arcs already part of the output solution), and (ii) check-
ing whether theMax-profit Balanced Settlement constraints



are satisfied while selecting a cycle. In the event that not all arcs

in E+X have been covered, the algorithm returns an empty set (and

the lower bound used in Settlement-bb is set to zero).

Time complexity: The running time of Settlement-bb-lb is dom-

inated by cycle enumeration (Line 2), as the number of cycles in

a (multi)graph can be exponential. In our context this is however

not blocking: as it is unlikely that the problem constraints are satis-

fied on long cycles, we employ a simple yet effective workaround

of detecting cycles up to a certain size L. The complexity of the

remaining steps is as follows. The covering phase (Lines 3–6) can

be implemented by using a priority queue with logarithmic-time

insertion/extraction. It comprises: (i) computing set-cover score

and checking the problem constraints for all cycles (O(L |C|) time);

(ii) adding/extracting cycles to/from the queue (O(|C| log |C|) time);

(iii) once a cycle C has been processed, updating the score of all

cycles sharing some edges with C (O(L |C| log |C|) time, as each

cycle is updated at most L times, and, for every time, it should be

removed from the queue and re-added with updated score). Hence,

the covering phase takes O(L |C| log |C|) time. In greedy selection

(Lines 7–11) cycles are processed one by one in non-increasing

amount order, and added to the solution after checking (in O(L)
time) the problem constraints. This yields a O(|C| (log |C|+L)) time.

Upper bound. The Settlement-bb upper bound lies on a relaxation

of Max-profit Balanced Settlement where Constraint (2) is

discarded and arcs are allowed to be selected fractionally:

Problem 2 (Relaxed Settlement). Given an S-multigraph G =

(V, E,w), find {xe ∈ [0, 1]}e ∈E so as to

Maximize

∑
e ∈E xew(e)

subject to

( ∑
e=(v,u)∈E xew(e) −

∑
e=(u,v)∈E xew(e)

)
∈ [f l(u)−bla (u), cap(u)−blr (u)] , ∀u ∈ V

The desired upper bound relies on an interesting characterization

of Relaxed Settlement as a network-flow problem. As a major

result in this regard, we show that solving Relaxed Settlement

on multigraph G is equivalent to solving the well-established Min-

Cost Flow problem [1] on an ad-hoc modified version of G. We

start by recalling theMin-Cost Flow problem:

Problem 3 (Min-Cost Flow [1]). Given a simple directed graph

G = (V ,E), a cost function c : E → R, lower-bound and upper-bound

functions λ : E → R, µ : E → R, and a supply/demand function

b : V → R, find a flow f : E → R so as to

Minimize

∑
e ∈E c(e)f (e)

subject to λ(e) ≤ f (e) ≤ µ(e), ∀e ∈ E∑
u :(v,u)∈E f (v,u)−

∑
u :(u,v)∈E f (u,v) = b(u), ∀u ∈ V

The modified version of G considered in this context is as follows:

Definition 4.1 (S-flow graph). The S-flow graphGf = (Vf , Ef ,wf )

of an S-multigraph G = (V, E,w) is a simple weighted directed

graph where:

• All arcs (u,v) ∈ E between the same pair of nodes are collapsed

into a single one, and theweightwf (u,v) is set to
∑
(u,v)∈E w(u,v);

• Vf = V∪{s̃, t̃}, i.e., the node set of Gf is composed of all nodes

of G along with two dummy nodes s̃ and t̃ ;
• Ef = E∪{(s̃,u) | u ∈ V}∪{(u, t̃) | u ∈ V }∪{(t̃ , s̃)}, i.e., the arc
set of Gf is composed of (i) all (collapsed) arcs of G, (ii) for each

Algorithm 3: Settlement-bb-ub

Input: An S-multigraph G = (V, E, w ), two multisets E+X ⊆ E, E
−
X ⊆ E

Output: A real number U BX
1: G− := (V, E \ E−X , w )
2: U BX←solve Min-Cost Flow applying Theor. 4.2 on G− and forcing

flow f (e)=w (e), ∀e ∈ E+X; return −1 if no admissible solution exists

node u ∈ V , a dummy arc (s̃,u) with weight wf (s̃,u)=bla (u)−

f l(u) and a dummy arc (u, t̃)with weightwf (u, t̃)=cap(u)−blr (u),

and (iii) a dummy arc (t̃ , s̃) with weightwf (t̃ , s̃)=∞.

The main result for the computation of the desired upper bound is

stated in the next theorem and corollary:

Theorem 4.2. Given an S-multigraph G = (V, E,w), let Gf =
(Vf , Ef ,wf ) be the S-flow graph of G. Let also cost, lower-bound,

upper-bound and supply/demand functions c : Ef → R, λ : Ef →

R, µ : Ef → R and b : Vf → R be defined as:

• λ(e) = 0, µ(e) = wf , ∀e ∈ Ef ;
• c(t̃ , s̃) = 0, and c(s̃,u) = c(u, t̃) = 0, ∀u ∈ Vf ;
• c(e) = −1, ∀e ∈ Ef ∩ E;
• b(u) = 0, ∀u ∈ Vf .
It holds that solvingMin-Cost Flow on input ⟨Gf , c, λ, µ,b⟩ is equiv-
alent to solving Relaxed Settlement on input G.

Proof. As c(e) = −1, if e ∈ E, c(e) = 0, otherwise, and ∀e ∈ E :

0 ≤ f (e) ≤ w(e), the objective function of Min-Cost Flow on Gf
can be rewritten as min

∑
e ∈E −f (e), which is equivalent to the ob-

jective max

∑
e ∈E xew(e) (xe ∈ [0, 1]) of Relaxed Settlement on

G. For the cap-floor constraints, the conservation of flows ensures

for any solution toMin-Cost Flow on Gf :

∀u ∈V:

∑
(v,u)∈E f (v,u)+ f (s̃,u)−

∑
(u,v)∈E f (u,v)− f (u, t̃)=b(u)=0

⇔ ∀u ∈V :

∑
(v,u)∈E f (v,u) −

∑
(u,v)∈E f (u,v) = f (u, t̃) − f (s̃,u).

As f (s̃,u) ∈ [fmin (s̃,u), fmax (s̃,u)] = [0,bla (u)−f l(u)] and f (u, t̃) ∈
[fmin (u, t̃), fmax (u, t̃)] = [0, cap(u)−blr (u)], then:

∀u ∈ V :

∑
(v,u)∈E f (v,u) −

∑
(u,v)∈E f (u,v)

= f (u, t̃) − f (s̃,u) ≤ fmax (u, t̃) − fmin (s̃,u) = cap(u) − blr (u),

and ∀u ∈ V :

∑
(v,u)∈E f (v,u) −

∑
(u,v)∈E f (u,v)

= f (u, t̃) − f (s̃,u) ≥ fmin (u, t̃) − fmax (s̃,u) = f l(u) − bla (u).

Overall, it is therefore guaranteed that ∀u ∈ V:∑
(v,u)∈E f (v,u)−

∑
(u,v)∈E f (u,v) ∈ [f l(u)−bla (u), cap(u)−blr (u)],

i.e., the floor-cap constraints in Relaxed Settlement. □

Corollary 4.3. Given an S-multigraph G, the solution to Max-

profit Balanced Settlement on G is upper-bounded by the solu-

tion to Min-Cost Flow on the input ⟨Gf , c, λ, µ,b⟩ of Theorem 4.2.

Proof. Immediate as, according to Theorem 4.2, the solution

toMin-cost Flow on input ⟨Gf , c, λ, µ,b⟩ corresponds to the op-

timal solution to a relaxed version of theMax-profit Balanced

Settlement problem on the original S-multigraph G. □

Corollary 4.3 is exploited for upper-bound computation as in Algo-

rithm 3. To handle the arcs to be discarded (E−) and included (E+),

Algorithm 3 removes all arcs E− from the multigraph, and asks for

a Min-Cost Flow solution where the flow on every arc e ∈ E+

is forced to be w(e). If no solution satisfying such a requirement

exists, no admissible solution to Max-profit Balanced Settle-

ment exists in the entire subtree rooted in the target tree-node X .



In this case the returned upper bound is −1, and the subtree rooted

inX is pruned by the Settlement-bb algorithm. We solveMin-Cost

Flow with the well-established Cost Scaling algorithm [6], which

has O(|E| (|V| log |V|) log(|V|wmax )) time complexity, where

wmax = maxe ∈E w(e). This also corresponds to the time complex-

ity of the entire upper-bound computation method.

4.2 Beam-search algorithm

Being Max-profit Balanced Settlement NP-hard, the exact

Settlement-bb algorithm cannot handle large S-multigraphs. We

thus design an alternative algorithm that finds approximated so-

lutions and can run on larger instances. For the reasons explained

in Section 4.1, we exploit again the idea of enumerating cycles and

properly selecting them while keeping the constraints satisfied.

We base cycle selection on interesting theoretical findings, for-

malizing the Optimal Cycle Selection problem and characteriz-

ing it as a Knapsack problem. We ultimately devise an algorithm,

dubbed Settlement-beam, combining Knapsack-solving method-

ologies with the principles of beam search. The details follow.

Optimal cycle selection. For a principled cycle selection, we start

from seeking the cycles that satisfy the Max-profit Balanced

Settlement constraints and exhibit maximum total amount:

Problem 4 (Optimal Cycle Selection). Given an S-multigraph

G= (V, E,w) and a set C of cycles in G, find a subset C∗ ⊆C so that:

C∗ = argmax
ˆC⊆C

∑
e ∈E( ˆC)w(e)

subject to E( ˆC) =
⋃
C ∈ ˆCC meets Constraint (1) in Problem 1.

Theorem 4.4. Problem 4 is NP-hard.

Proof. We reduce fromMaximum Independent Set [4], which

asks for a maximum-sized subset of vertices in a graph no two of

which are adjacent. Given a graphG = (V ,E) instance of Maximum

Independent Set, we construct an instance ⟨G,C⟩ of Optimal

Cycle Selection as follows. For a vertex u ∈ V , let N (u) = {v |
(u,v) ∈ E}, du = |N (u)|, dmax = maxu ∈V du . Without loss of

generality, we assume that ∀u ∈ V : du > 0. First, we let the node

set V of G contain: (i) a pair of nodes ⟨u ′,u ′′⟩ for every vertex

u ∈ V , (ii) a node uv for each (u,v) ∈ E. Let alsoV follow a global

ordering. For each u ∈ V , we create a cycleCu = c1 → c2 → · · · →
cdu+2 → c1 in G, where c1 = u ′, c2 = u ′′, and all other nodes

ci : i > 2 correspond to nodes {uv ∈ V | v ∈ N (u)}, ordered as

picked above. The arc weights of Cu are defined as follows:

• w(c1, c2) = 1 + 3

2
[dmax (dmax + 1) − du (du + 1)],

• w(ci , ci+1) = du + i − 2, ∀i ∈ [2..du + 1],
• w(cdu+2, c1) = 2du .

Finally, we set

• blr (x) = bla (x) = 0, cap(x) = +∞, ∀x ∈ V ,

• f l(u ′) = f l(u ′′) = −∞, ∀u ′,u ′′,
• f l(uv) = −1, ∀uv ,
and the input cycles C equal to {Cu | u ∈ V }. It holds that:

(a) G has 2|V |+ |E | nodes and
∑
u ∈V ′(du +2) = 2(|V |+ |E |) arcs,

taking polynomial space and construction time in the G’s size.
(b) All cycles in C are arc-disjoint with respect to each other.

(c) Every cycle Cu ∈ C has the same total amount, which is equal

to 1 + 3

2
[dmax (dmax + 1) − du (du + 1)] +

∑du
i=0(du + i) = 1 +

3

2
[dmax (dmax+1)−du (du+1)]+

3

2
du (du +1)=1+

3

2
dmax (dmax+1).

(d) Selecting any two cycles Cu ,Cv ∈ C such that u and v are

adjacent in G, violates the constraint on f l(uv) (as bla (uv) will
result to be bla (uv) = −2 < f l(uv) = −1)).

Based on (b) and (c), any cycle brings the same gain to the objective.

Thus, solving Optimal Cycle Selection on ⟨G,C⟩ corresponds

to selecting the maximum number of cycles in C so that cap-floor

constraints are met. Combined with (d), solving Optimal Cycle Se-

lection on ⟨G,C⟩ is equivalent to selecting the maximum number

of vertices in G no two of which are adjacent. □

Characterization as a Knapsack problem. As Optimal Cycle

Selection is NP-hard, we focus on designing effective approxi-

mated solutions. To this end, we show an intriguing connection

with the following variant of the well-known Knapsack problem:

Problem 5 (Set Union Knapsack [7]). Let U = {x1, . . . ,xh }
be a universe of elements, S = {S1, . . . , Sk } be a set of items, where

Si ⊆ U , ∀i ∈ [1..k], p : S → R be a profit function for items

in S, and q : U → R be a cost function for elements in U . For

any
ˆS ⊆ S define also: U ( ˆS) =

⋃
S ∈ ˆS

S , P( ˆS) =
∑
S ∈ ˆS

p(S), and

Q( ˆS) =
∑
x ∈U ( ˆS) q(x). Given a real number B ∈ R, Set Union

Knapsack finds S∗ = argmax
ˆS⊆S

P( ˆS) s.t. Q( ˆS) ≤ B.

A simple variant of Set Union Knapsack arises when both costs

and budget constraint are d-dimensional:

Problem 6 (Multidimensional Set Union Knapsack). Given

U , S, p as in Problem 5, a d-dimensional cost function q : U → Rd
,

and a d-dimensional vector B ∈ Rd
, find S∗ = argmax

ˆS⊆S
P( ˆS)

s.t. Q( ˆS) ≤ B, where Q( ˆS) =
∑
x ∈U ( ˆS) q(x).

We observe that an instance of Optimal Cycle Selection can

be transformed into an instance of Multidimensional Set Union

Knapsack so that every feasible solution for the latter instance is

also a feasible solution for the original Optimal Cycle Selection

instance. We let the arcs E represent elements, cycles C represent

items, and define 2|V| costs/budgets for each element (arc), so as to

match the cap-floor constraints on every node (|V| costs/budgets

for cap- and floor-related constraints each). Formally:

Theorem 4.5. Given an S-multigraph G = (V, E,w) and a set

C of cycles in G, let ⟨U ,S,p,q,B⟩ be an instance of Multidimen-

sional Set Union Knapsack defined as follows:

• U = E; S = C; ∀C ∈ C : p(C) =
∑
e ∈C w(e);

• ∀(ui ,uj ) ∈ E : q(ui ,uj ) = [q+(ui ,uj ) q−(ui ,uj )] ∈ R2 |V |
,

where

◦ q+(ui ,uj ) = [q+k (ui ,uj )]
|V |

k=1, with q
+
i (ui ,uj ) = −w(ui ,uj ),

q+j (ui ,uj ) = w(ui ,uj ), and q
+
k (ui ,uj ) = 0, for k , i, j;

◦ q−(ui ,uj ) = [q−k (ui ,uj )]
|V |

k=1, with q
−
i (ui ,uj ) = w(ui ,uj ),

q−j (ui ,uj ) = −w(ui ,uj ), and q
−
k (ui ,uj ) = 0, for k , i, j;

• B := [B+ B−] ∈ R2 |V |
, where

◦ B+ = [cap(u1) − blr (u1), . . . , cap(un ) − blr (un )];
◦ B− = [bla (u1) − f l(u1), . . . ,bla (un ) − f l(un )].

It holds that any feasible solution for Multidimensional Set Union

Knapsack on input ⟨U ,S,p,q,B⟩ is a feasible solution for Optimal

Cycle Selection on input ⟨G,C⟩.



Algorithm 4: Settlement-beam

Input: An S-multigraph G = (V, E, w ), an integer K
Output: A multiset E∗ ⊆ E

1: E∗ ← ∅

2: C← cycles of G {cf. [8]}

3: while C , ∅ do

4: C′ ← K -sized subset of C by Greedy Max Cover {cf. [9]}

5: C′
2
← {{Ci , Cj } |Ci , Cj ∈ C′ }

6: for all {Ci , Cj } ∈ C′
2
do

7: Ci j ← Ci ∪Cj
8: process all C ∈C′\ {Ci , Cj } one by one, by non-increasing ω(·)

score (Eq.(3)); add C to Ci j if Ci j∪C∪E∗ is feasible for Prob. 4
9: E∗ ← E∗ ∪ argmaxCi j ∈C′

2

∑
e∈Ci j w (e)

10: C← C \ (C′ ∪ {C ∈ C | C ∩ E∗ = C })

Proof. (Sketch) It suffices to show that the constraints of Mul-

tidimensional Set Union Knapsack on ⟨U ,S,p,q,B⟩ correspond
to cap-floor constraints of Optimal Cycle Selection on ⟨G,C⟩.

This can be achieved by simple math on q+, q−, B+, B−. □

Putting it all together. Motivated by Theorem 4.5, we devise

an algorithm to approximate Optimal Cycle Selection inspired

by Arulselvan’s algorithm for Set Union Knapsack [2], which

achieves a 1−e−1/fmax
approximation guarantee, where fmax is the

maximum number of items in which an element is present. Arul-

selvan’s algorithm considers all subsets of 2 items whose weighted

union is within the budget B. Then, it augments each subset with

items Si added one by one in the decreasing order of an ad-hoc-

defined score, as long as the inclusion of Si complies with the

budget constraint B. The score exploited for item processing is di-

rectly proportional to the profit of Si and inversely proportional

to the frequency of Si ’s elements within the entire item set S. The

highest-profit one of such augmented subsets is returned as output.

The ultimate Settlement-beam algorithm (Algorithm 4) combines

the ideas behind Arulselvan’s algorithm with the beam-search para-

digm and a couple of adaptations to make it suitable for our context.

Particularly, the adaptations are as follows. (i) We extend Arulsel-

van’s algorithm so as to handle aMultidimensional Set Union

Knapsack problem instance derived from the inputOptimal Cycle

Selection instance as stated in Theorem 4.5 (trivial extension). (ii)
We define the score of a cycle C ∈ C as:

ω(C) =

∑
e ∈C w(e)∑
e ∈C

w (e)
f (e)

, where f (e) = |{C ∈ C : e ∈ C}|, (3)

whose rationale is to consider the total cycle amount, penalized

by a term accounting for the frequency of an arc within the whole

cycle set C. The idea is that frequent arcs contribute less to the

objective function, which is defined on the union of the arcs of all

selected cycles (see Problem 4). Finally, (iii) to overcome the expen-

sive pairwise cycle enumeration and augmentation of all 2-sized

cycle sets with all other cycles, we adopt a beam-search methodol-

ogy to reduce the cycles to be considered. We first select a subset

C′ ⊆ C of cycles of size K ≤ |C| whose union arc set exhibits the

maximum amount,
4
and use C′ for both pairwise cycle computation

and augmentation. We repeat the procedure (by selecting a further

K-sized subset of C \ C′) until C has become empty.

4
To solve this step, we note that the problem at hand is an instance of (weighted)Max

Cover [9], where arcs correspond to elements and cycles correspond to sets. We hence

employ the classic greedy (1 − 1

e )-approximation algorithm, which iteratively adds to

the solution the cycle maximizing the sum of the weights of still uncovered arcs.

Algorithm 5: Settlement-hybrid

Input: An S-multigraph G = (V, E, w ), two integers H, K
Output: A multiset E∗ ⊆ E

1: E∗ ← ∅, CC← weakly connected components of G

2: for all G ∈ CC s.t. |arcs(G) | ≤ H do

3: E∗ ← E∗∪ Settlement-bb on input G {Algorithm 1}

4: for all G ∈ CC s.t. |arcs(G) | > H do

5: E∗ ← E∗∪ Settlement-beam on input ⟨G, K ⟩ {Algorithm 4}

Time complexity. As far as cycle enumeration, the considerations

made for Algorithm 2 (Section 4.1) remain valid here too. The

complexity of the remaining main steps is as follows. Denoting by L
the maximum size of a cycle in C, the greedyMax Cover algorithm

on input C′ (Line 4) takes O(LK logK) time. All feasible cycle pairs

(Line 5) can be computed in O(LK2) time, while augmentation of

all such pairs (Lines 6–8) takes O(LK3) time. All these steps are

repeated O(
|C |
K ) times. The overall time complexity is O(LK2 |C|).

4.3 Hybrid algorithm

As a straightforward observation, Max-profit Balanced Settle-

ment can be solved by running any of the algorithms described

above on eachweakly connected component of the input S-multigraph

separately, and then taking the union of all partial solutions. This

motivates us to devise a hybrid strategy which runs the exact

Settlement-bb algorithm on the smaller connected components

and the Settlement-beam algorithm on the remaining ones. This al-

gorithm, termed Settlement-hybrid, is the algorithm we ultimately

propose in this work. We report its outline as Algorithm 5.

Implementation details. We improve the efficiency of all algo-

rithms observing that a node with no incoming or outgoing arc

can be filtered out of the input S-multigraph, as it violates Con-

straint (2) in Problem 1. Such a filteringmay be exploited recursively,

extracting the (1, 1)-D-core of the input S-multigraph [5]. Regard-

ing the tree-like search space of Settlement-bb, we sort the arcs by

non-increasing amount, as larger-amount arcs are more likely to

contribute more to the optimal solution. Finally, we experimented

with both bfs and dfs visiting strategies, without observing any

substantial difference.

5 EXPERIMENTS

We tested the performance of our algorithms on a random sample

of a real dataset provided by UniCredit, a noteworthy European

banking company. The sample consists of 5 413 375 receivables and

369 479 (anonymized) customers, spanning one year in 2015-16.

Customers’ attributes. We set customers’ attributes based on

statistics computed on a training prefix of 3 months of data.

As far as the initial actual balance bla (u) of each customer u,
we computed the difference between the total amount of her pas-

sive receivables and the total amount of her active receivables; we

considered the days were such a difference was negative, and ul-

timately set bla (u) as the average of the absolute values of such
negative daily differences. The rationale is that in those days the

customer would have needed extra liquidity with respect to the

amount cashable from incoming receivables, to handle the payment

of the receivables in which she was listed as payer. Assuming that

in reality customers would try this new service with a limited initial

cash deposit, we also imposed a hard upper bound of 50K euros for

the initial bla of every customer.



Table 1: Size of the input S-multigraphs.

Worst Scenario Normal Scenario Best Scenario

CAP < ∞ CAP = ∞ CAP < ∞ CAP = ∞ CAP < ∞ CAP = ∞
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

#Nodes 16 070 40 810 58 390 16 060 40 810 58 380 27 890 62 890 82 930 27 890 62 870 82 900 42 330 80 260 97 400 42 320 80 230 97 380

#Arcs 14 450 41 720 69 270 14 430 41 670 69 180 28 680 76 490 116 000 28 640 76 310 115 600 50 600 111 100 149 300 50 520 110 700 148 500

As for the cap, we considered: (i) cap < ∞, and (ii) cap = ∞. In
the former case each customer was assigned a finite cap, equal to
the average amount she received in the training data. Customers

who received no payments in the training interval were assigned a

default cap equal to the average cap of all other customers. In the

cap = ∞ setting we instead allowed all accounts to grow arbitrarily.

Finally, we set f l(u) = 0, for each customer u.

Simulation.We defined 6 simulation settings:

(1) Finite CAP. Let f cap(u) be the finite value of the cap of a cus-

tomeru computed as explained above. We considered 3 scenarios:

• Worst: li f e(R) = 5 ,∀R ∈ R, cap(u) = f cap(u),∀u ∈ U;

• Normal: li f e(R) = 10 ,∀R ∈ R, cap(u) = 2f cap(u),∀u ∈ U;

• Best: li f e(R) = 15 ,∀R ∈ R, cap(u) = 3f cap(u),∀u ∈ U;

(2) Infinite CAP. Here we also considered a Worst, a Normal, and a

Best scenario with the same values of li f e as in the corresponding
finite-CAP case, but we set ∀I ∈ I, cap(u) = ∞ ,∀u ∈ U.

Such settings identify different sets of valid receivables for a day,

thus yielding different input multigraphs. Table 1 reports graph

sizes. More complex scenarios clearly lead to larger graphs. Con-

versely, as the cap goes from <∞ to∞ (in the same scenario), graphs

get smaller. This is motivated as cap<∞ represents a tighter con-

straint for receivable settlement, i.e., more receivables not settled

any day which will be included in the input graph of the next day.

Algorithms. We compared our ultimate proposal, i.e., Settlement-

hybrid (Algorithm 5), against two baselines: the simple greedy-

cycle-selection Settlement-bb-lb algorithm (Algorithm 2), and the

beam-search Settlement-beam algorithm (Algorithm 4). Clearly,

the exact Settlement-bb (Algorithm 1) could not afford the size

of the real graphs involved in our experiments. However, we re-

call that it is part of Settlement-hybrid, where it is employed to

handle the smaller connected components. To get an idea of its

performance, one can thus resort to the comparison Settlement-

hybrid vs. Settlement-beam. As for parameter setting, all experi-

ments refer to L = 15 (all algorithms based on cycle enumeration),

H = 20 (Settlement-beam), and K = 1 000 (Settlement-beam and

Settlement-hybrid). Observe that we do not have external baselines

to employ, as this is (to the best of our knowledge) the first attempt

to exploit the receivable network to optimize RF services.

Assessment criteria. We assess the performance of the various

algorithms by measuring the total amount of the receivables that

each algorithm selects for automatic settlement. This metric pro-

vides direct evidence of the benefits gained by both the funder and

the customers. In fact, the greater the amount, the less liquidity

the funder is requested to anticipate, and the larger the saving for

customers due to the reduced fees of the network-based service.

Testing environment. All algorithms were implemented in Scala

(v. 2.12). Experiments in Table 2 were run on a commodity laptop

equipped with an Intel Core i7 CPU at 2.8GHz and 16GB RAM.

Experiments in Table 3 were run on a i9 Intel 7900x 3.3GHz, 128GB

RAM machine, which we limited to 60GB in our tests.

General performance. Table 2 shows the results of our experi-

ments. For each scenario, we split the dataset into 3-month periods,

to have a better understanding of the performance on a quarterly

basis, and speed up the evaluation by parallelizing the computations

on different quarters. For each scenario/quarter pair, we report: to-

tal amount (euros) of the settled receivables, per-day running time

(seconds) averaged across all days in the quarter, total number of

settled receivables, and number of distinct customers involved in

at least a daily solution. For Settlement-hybrid we also report the

percentage gain on the total amount with respect to the baselines.

Settlement-hybrid outperforms both baselines in terms of settled

amount. In the finite-cap, worst scenario, the gain of Settlement-

hybrid over Settlement-bb-lb is 150% on average, with a maximum

of 460%. As for infinite cap, Settlement-hybrid yields avg gain over

Settlement-bb-lb of 70%, 28%, and 30.6% in the three scenarios.

The superiority of Settlement-hybrid is confirmed over the other

baseline, Settlement-beam: the average gain is 139%, 45%, and 33%

in the finite-cap scenarios, and 37%, 16%, and 9% in the infinite-cap
cases, with maximum gain of 392%. This attests the relevance of

employing the exact algorithm even only on small components. In

one quarter Settlement-beam and Settlement-hybrid perform the

same: the corresponding graph has no small components where

the exact solution improves upon Settlement-beam.

Concerning running times, the fastest method is the simplest one,

i.e., Settlement-bb-lb: in the finite-cap cases it takes on average

10s . The proposed Settlement-hybrid takes from 3.5s to 22mins ,
remaining perfectly compliant with the settings of the service being

built, which computes solutions offline, at the end of each day.

Settlement-hybrid is comparable to Settlement-beam, due to the

fact that the computation on large components dominates.

Scalability. To test the scalability of Settlement-hybrid, we con-

sidered the finite-cap, normal scenario and randomly sampled seg-

ments of data corresponding to 5, 10, 15, 30, 60, and 90 days. We

collapsed the set of receivables of each segment into one single

S-multigraph, and ran Settlement-hybrid on it, setting L = 10 and

K = 100. The goal of this experiment was to assess the running

time of Settlement-hybrid on larger graphs. Table 3 reports the

outcome of this experiment, showing, for each segment, size of the

S-multigraph, settled amount, and running time (in seconds). Note

that amounts in Table 2 are generally larger than those reported

here. The two experiments are not comparable in terms of amount,

as Table 2 reports amounts summed over all time instants of a

quarter, each expanded to a window of 5, 10 or 15 days depending

on the li f e parameter. Running time is instead comparable up to

the segments of 15 days, because the first table reports average

per-day running time. Indeed, when up to 15 days are considered,

the achieved times are consistent with those reported before. On a

period of 30 days, the algorithm is still very efficient, taking slightly

more than a minute. The running time increases on the two larger

segments: the algorithm employs less than one hour on the two-

month segment, and around 7.5 hours on the three-month one.

Albeit the cost increase is remarkable, note that the network-based



Table 2: Experimental results: proposed Settlement-hybrid algorithm vs. baselines.

Settlement-bb-lb Settlement-beam Settlement-hybrid

CAP Scenario Start Date End Date Amount Time (s) Receivables Clients Amount Time (s) Receivables Clients Amount

%Gain vs. %Gain vs.

Time (s) Receivables Clients

S-bb-lb S-beam

<∞ worst

2015-07-01 2015-09-30 95 397 950 1.78 1827 859 79 014 431 3.93 2532 939 146 703 722 53.78 85.67 3.54 3330 1208

2015-10-01 2015-12-31 121 680 562 1.80 1798 863 111 184 064 9.22 2222 891 157 007 283 29.03 41.21 9.45 3263 1248

2016-01-01 2016-03-31 52 232 665 1.93 2066 987 59 767 431 14.39 2730 1034 82 875 118 58.67 38.66 14.47 3619 1318

2016-04-01 2016-06-30 46 457 493 1.93 1862 950 52 872 191 16.49 2499 987 260 196 811 460.08 392.12 13.72 3296 1254

<∞ normal

2015-07-01 2015-09-30 162 215 076 2.73 4535 1986 146 759 007 99.09 6673 2269 221 401 342 36.49 50.86 75.18 7951 2685

2015-10-01 2015-12-31 151 707 991 2.83 4305 1975 133 556 473 47.52 5906 2141 168 556 675 11.11 26.21 48.14 7080 2548

2016-01-01 2016-03-31 143 547 779 3.01 5093 2200 158 408 830 76.15 7319 2464 208 011 456 44.91 31.31 113.72 8172 2730

2016-04-01 2016-06-30 149 813 738 3.01 5137 2296 162 254 519 104.73 7459 2603 277 568 569 85.28 71.07 117.45 8551 2941

<∞ best

2015-07-01 2015-09-30 229 604 568 7.63 7443 3115 263 379 260 172.09 11 045 3566 270 221 655 17.69 2.60 158.36 12 004 3957

2015-10-01 2015-12-31 195 171 304 4.00 7183 3108 208 162 233 133.60 10 364 3506 251 353 161 28.79 20.75 143.71 11 669 3917

2016-01-01 2016-03-31 236 195 806 9.73 8397 3516 264 654 596 193.91 12 564 4000 314 861 548 33.31 18.97 205.36 13 486 4333

2016-04-01 2016-06-30 210 056 244 8.92 9094 3801 234 928 905 212.45 13 184 4259 449 862 686 114.16 91.49 239.25 14 360 4620

∞ worst

2015-07-01 2015-09-30 194 399 317 2.56 2863 1275 215 249 395 110.43 5418 1535 295 595 794 52.06 37.33 143.39 6528 1872

2015-10-01 2015-12-31 215 635 790 2.30 2939 1283 263 672 222 124.54 5285 1490 319 804 764 48.31 21.29 125.16 6724 1918

2016-01-01 2016-03-31 206 616 203 12.06 3329 1371 262 778 883 343.81 6876 1718 302 740 733 46.52 15.21 354.13 8290 2116

2016-04-01 2016-06-30 216 264 862 2.56 3224 1383 286 859 858 287.28 6034 1685 504 402 450 133.23 75.84 304.92 7241 1992

∞ normal

2015-07-01 2015-09-30 553 364 544 64.58 7131 2836 660 907 304 1168.95 15 323 3761 779 733 449 40.91 17.98 1006.17 17 082 4268

2015-10-01 2015-12-31 643 722 123 6.67 6742 2736 663 873 349 618.98 14 570 3507 784 314 578 21.84 18.14 690.14 16 761 4133

2016-01-01 2016-03-31 693 852 990 29.03 7999 3034 743 945 529 1159.27 17 390 4143 827 346 450 19.24 11.21 1329.80 19 544 4701

2016-04-01 2016-06-30 751 368 135 30.81 8289 3189 855 932 063 757.85 17 666 4155 987 866 224 31.48 15.41 865.92 19 576 4718

∞ best

2015-07-01 2015-09-30 916 036 152 8.35 11 246 4231 1 110 498 564 866.00 23 055 5353 1 172 926 462 28.04 5.62 988.04 24 811 5917

2015-10-01 2015-12-31 1 028 777 612 26.28 10 937 4159 1 275 000 083 842.56 23 235 5333 1 565 296 054 52.15 22.77 1182.68 25 469 5901

2016-01-01 2016-03-31 1 329 747 599 54.87 13 271 4830 1 489 713 871 993.90 27 404 6130 1 489 713 871 12.03 0 1101.04 27 404 6130

2016-04-01 2016-06-30 1 270 225 872 22.05 13 337 4835 1 524 865 674 904.29 26 177 5781 1 657 784 888 30.51 8.72 886.05 27 746 6239

Table 3: Scalability of the proposed Settlement-hybrid algorithm.

Days Nodes Arcs Amount Time (s) Days Nodes Arcs Amount Time (s)

5 15 983 14 466 185 959 1 10 41 088 43 244 873 317 4

15 68 183 85 454 3 471 960 17 30 106 167 183 570 16 151 068 65

60 143 989 377 635 38 063 145 3291 90 168 861 600 172 73 101 255 27 504

RF service is designed to function offline, at the end of each working

day. In this setting even the larger times reported would be accept-

able. Moreover, given that the service works on a daily basis, the

realistic data sizes that Settlement-hybrid is required to handle, are

those of the previous experiment. Finally, the tested implementation

is sequential. It can be improved by parallelizing the computation

on the connected components of the input multigraph.

6 RELATEDWORK

TheMax-profit Balanced Settlement problem that formalizes

the receivable-settlement strategy behind the proposed network-

based RF service is a novel one. To the best of our knowledge, no

previous works adopt the same formulation, neither for receivable

financing, nor for other applications. All the references that inspired

our algorithmic solutions are already reported in Section 4 where

appropriate. Here we mention for the interested reader a couple of

problems that share some marginal similarity with our problem.

As testified by upper-bound derivation in the design of the ex-

act algorithm, Max-profit Balanced Settlement resembles a

network flow problem [1]. Among the numerous variants of this

problem, the one perhaps most related to ours is Min-cost flow with

minimum quantities [13], which introduces a constraint for having

minimum-flow quantities on the arcs of the network. In our context

minimum quantities are required because a receivable can only

be paid entirely. However, Max-profit Balanced Settlement

requires a different conservation-flow constraint (to properly handle

cap and floor), and an additional constraint that each node in the

solution has at least one incoming arc and one outgoing arc.

Another recent variant is the Max-flow problem with disjunc-

tive constraints [12], which introduces binary constraints on using

certain arc pairs in a solution. The problem is applied to event-

participant arrangement optimization [14] in event-based social

networks, such as Meetup. Compared to that problem, our Max-

profit Balanced Settlement requires different constraints on

the arcs included in any feasible solution.

7 CONCLUSION

We have presented a novel, network-based approach to receivable

financing. Our main contributions consist in a principled formula-

tion and solution of such a novel service: we define and characterize

a novel optimization problem on a network of receivables, and de-

sign both an exact algorithm and a more efficient algorithm to solve

the problem. Experiments on real receivable data show that our

algorithms work well in practice. In the future we plan to improve

the methodology by incorporating predictive aspects, where recent

history is considered instead of taking static decisions every day.

We will also attempt to apply the lessons learned here to advance

other financial services, e.g., receivable trading.
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