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ABSTRACT

We study the fundamental problem of finding the set of kogdge
colors that maximizes the reliability between a source naig

a destination node in an uncertain and edge-colored grapir. O
top-k reliable color set problem naturally arises in a variety of
real-world applications including pathway finding in bigloal net-
works, topic-aware influence maximization, and team foromat
in social networks, among many others. In addition to #hE-
completeness of the classical reliability finding problestvieen a
source and a destination node over an uncertain graph, we pro
that our problem is alstNP-hard, and neither sub-modular, nor
super-modular. To this end, we aim at designing effectivksmal-
able solutions for the top-reliable color set problem. We first
introduce two baselines following the idea of repetitivelusion

of the next best edge colors, and we later develop a more effi-

cient and effective algorithm that directly finds the highgliable

paths while maintaining the budget on the number of edgersol
An extensive empirical evaluation on various large-scale @al-

world graph datasets illustrates that our proposed tedksigre
both scalable and highly accurate.

Categories and Subject Descriptors

H.3.3 Information Search and Retrieval]: Search process; H.2.8
[Database Applicationg: Uncertain networks

General Terms
Algorithms, Performance
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1. INTRODUCTION

Uncertainty is inherent in graph data due to a variety ofoeras
such as noisy measurements, inference and prediction maatel
explicit manipulation, e.g., for privacy purposes. In the&mses,
data is represented as an uncertain graph, that is, a grapsewh
arcs are accompanied with a probability of existence. A &mein-
tal problem in uncertain graphs iisliability query, which asks to
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estimate the probability that a given destination node ashable
from a given source node. The reliability estimation prableas
been widely studied in device networks [1], social netwd&sas
well as in biological networks [10].

Nevertheless, most of these reliability queries over uagegraphs
are performed without considering any edge attributeschviie
simply refer to as edge colors. Since complex networks, aadii-
ological, social, and information networks usually exhitiverse
types of relationships among the entities, it is often megfii to
define reliability via a constrained set of edge colors [3d. this
end, we study the following novel and critical problemiven a
source and a destination node in an edge-colored, uncegeiph
and a small positive integek, find the edge-color-set of sizghat
maximizes the reliability from the source to the destinatio

Application. The top# reliable color set problem naturally arises
in a variety of real-world scenarios as follows.

Pathway Formation in Biological Network#n order to understand
the metabolic chain reactions in cellular systems, bialsgitilize
metabolic networks, where each vertex represents a cordpand

a directed edge between two compounds indicates that one com
pound can be transformed into another through a certain ichém
reaction [8]. The edge colors record the enzymes which abntr
these reactions. In addition, uncertainty arises in méiabet-
work edges due to noisy measurements, experimental efmers,
ference, and prediction models. One of the basic questiossich
networks is finding the top-set of enzymes which create pathways
of very high probabilities between two given compounds.

Topic-Aware Information Cascaddlarketing companies are grad-
ually turning to social networks such as Facebook, Twitherd
LinkedIn for campaigning of their products. However, théun
ence of an individual over another in a social network oftesnges
drastically based on advertisement contents [2]. Theeefore can
formulate the topic-aware information cascade problenh vaib
uncertain graph model, where the probabilities on the edgps
based on advertisement features. In this setting, it icatitor the
marketing companies to identify the tépadvertisement features
such that the information cascade from an early adopter towpg
of target customers could be maximized.

Challenges. Our top+% reliable color set problem is a non-trivial
one — in fact, the simplest reliability computation problewer
uncertain graphs is #P-complete problem [1]. Due to the large
size of networks, most work in this regard has resortelllomte-
Carlo (MC) sampling methods [6], as well as other sampling tech-
nigues improving upon the efficiency MC methods (e.gRHT-
sampling [9]). These sampling-based approaches, inyeabti-
mate the reliability between two nodes very well, and thayallg
require only polynomial time in the size of the network.



However, even considering polynomial-time sampling téghes
to estimate reliability, the tog-reliable color set problem remains
NP-hard. More importantly, unlike the classical maxover prob-
lem, our problem is neither sub-modular, nor super-modilaere-
fore, an iterative hill-climbing algorithm that maximaligcreases
the marginal gain at every iteration, and which has beenlwide
used for solving the mak-cover problem, can no longer be em-
ployed in our case for deriving similar approximation gurdes.

Our contribution. We propose two baselines to solve our fope-
liable color set problem, and we also design a more efficiethed
fective algorithm that directly finds the highly-reliablaths while
maintaining the budget on the number of edge-colors. Ouerxp
mental results over three real-world large-scale grapésaas attest
the effectiveness and efficiency of our approach.

2. PRELIMINARIES

2.1 Problem Formulation

An edge-labeled, uncertain graghs a quadrupléV, E, C, P),
whereV is a set ofn nodes,E C V x V is a set ofm directed
edges,C is the set of all edge-colors ii, whereasC'(e) C C
is a set of edge-colors assigned to the edge E. Finally, P :
E x C — (0, 1) assigns a conditional probability on an edge given
a specific color, i.e.P(elc) € (0,1).
Edge Existence Probability. In this work, we assume that the
conditional probability of an edge € E given some coloe €
C(e), thatis,P(e|c) is independent [3] of the other colorsd@(e).
Thus, the edge-existence probability ©fgiven the edge-colors
c1,¢2,...,¢r € Clis: Ple|cica...cr) = 1=T]_;(1—P(e|ci)).
Given a predefined edge-color st C C, one can compute all
the edge-existence probabilities in the uncertain gré@phif the
edge-color set’; is predefined, we simply write the edge-existence
probabilities asP(e|C).
Possible World Semantics. The bulk of the literature on uncer-
tain graphs and device-network-reliability assumes tlgtemnce of
the edges in the graph independent from one another angrieter
uncertain graphs according to the well-known possibleldvee-
mantics [6, 8, 9]. More precisely, given a pre-defined edgerc
setC1, a possible grapli C (G, C4) is a pair(V, Eg), where
E¢ C E, and its sampling probability is:

Pr(GICy) = ] Pelcr) ] (1—P(elCh))

e€Eg e€cE\Eqg

@)

For a possible deterministic gragh C (G, C1), we define an
indicator functionIx(s,t) to bel if there is a path inG from a
source node € V to atarget node € V, and0 otherwise. Finally,
the probability that is reachable frons in the uncertain grapty
and via a pre-defined edge-color 6&tis defined as thedge-color-
constrained reliabilityfrom s to ¢, and it is denoted byRc, (s, t).
The edge-color-constrained reliability is computed akofes.

> [Ia(s,t) x Pr(G|Ch)]

GL(G,C1)

Rey (s,t) = 2

The number of possible worlds C (G, C4) is exponential in
the number of edges, which makes the exact reliability caepu
tion a #P-complete problem; and hence, almost infeasible even
for moderately-sized graphs.

Problem Statement. We are now ready to define our problem
statement.

PROBLEM1 (Top-k RELIABLE COLOR SET). Given asource
nodes € V and a destination node€ V' in an edge-colored, un-
certain graphGg = (V, E,C, P), and a small positive integek,

Figure 1:Example for Non-Sub-Modularity and Non-Super-Modularity

find the edge-color-set';, of sizek that maximizes the edge-color-
constrained reliabilityRc, (s, t) from s to ¢t. Formally,

arg max Rc, (s, 1)
¢ cc

such that |Cy| =k 3)
Intuitively, the topk reliable edge-colors create multiple paths
of high probabilities from source to destination node.

2.2 Hardness Results

Our problem, however, is non-trivial. Theorem 1 shows that
Problem 1 iNP-hard, even when one considers polynomial-time
reliability estimation approaches (e.l§yIC sampling).

THEOREM 1. The topk reliable color set problem iNP-hard.

PrROOF We proveNP-hardness by a reduction from the max-
cover problem. In max: cover problem, we are given a universe
U, and a set of subsets ot/, i.e.,S = {51, S52,...,Sr}, where
S; C Uforalli € [1...h]. The objective is to find a subsst*
of S of sizek such that the number of elements coveredstyis
maximized, i.e., SO as to maximiz&scs+ S|. Given an instance
of the maxk cover problem, we construct in polynomial time an
instance of our toge reliable color set problem.

We put in our edge-colored, uncertain grapla source node
and a destination node Next, we include a set of nodes, us, . . .,
uz, one for each element it"(Z = |U|), and connect each of
these nodes to the destination nodewith a directed edgéu, ¢).
Each such edgéu,¢) has colore, and we assign a probability
P((u,t)|c) = p, withp < 1. We then add a set of nodes, =2, . . .,
xz, one for each element it"(Z = |U|), and connect each of
these nodes: to the source node with a directed edgés, ).
Each such edgés, =) also has coloe, and we assign a probability
P((s,z)|c) = p, with p < 1. Finally, if some element;; € U
is covered by at least one of the subsetsSinwe add a directed
edge(x;, us) in G. For each ofS; € S that covers the item;, we
assign a coloe; on the edgdz;, u;), and then, we also assign a
probability P((z;, us)|c;) = 1.

Now, we ask for a solution of our problem on the graph con-
structed this way by using + 1 colors. One may observe that
every solution to our problem necessarily takes celobecause
otherwise there would be no way to connedb ¢. Also, the re-
liability is maximized by properly selecting colors that keaeach
of the edgeqz;, u;) exist with probabilityl. However, in order
for each edge$z;, u;) to exist with a probabilityl, it suffices to
have selected only one of the colors between such a pair @snod
Thus, we can see that maximizing reliability with+ 1 colors cor-
responds to maximizing coverage of element#/iwith &k sets in
S. Hence, the theorem.

In this paper, we leave the following question open whethebP
lem 1 can be approximately solved within a constant factpoiy-
nomial time or not. However, we show that unlike the nmiax-
cover problem, our toj-reliable color set problem is neither sub-
modular, nor super-modular; therefore, making it difficaltlesign
an approximate solution with provable performance guaesit



CLAIM 1. The top# reliable color set problem is not sub-modular.

A function f() is sub-modular if it satisfies the following prop-
erty: f(AUz) — f(A) > f(BUz)— f(B), for all elements
z and all pairs of setsl C B. We show non-sub-modularity of
our problem with an example in Figure 1(a). More specificady
Cy = {e2}, C2 = {c1,c2}. Itis easy to verify thalRc, (s,t) =
0, Reyugesy (8,t) = 0, Rey(s,t) = 0.3, and R, e, =0.475.
Clearly, the sub-modularity property does not hold in tiiaraple.

CLAIM 2. The top#k reliable color set problem is not super-
modular.

A function f() is super-modular if it satisfies the following prop-
erty: f(AUz) — f(A) < f(BUz)— f(B), for all elements
x and all pairs of setsl C B. We show non-super-modularity of
our problem with an example in Figure 1(b). l&t = {c1}, C2 =
{c1,c3}. One may verify thaRc, (s, t) = 0.25, Re, ufeq} (5,1) =
0.438, Rc,(s,t) = 0.438, and R¢,uqc,y = 0.578. Hence, the
super-modularity property does not hold in this example.

3. ALGORITHMS FOR TOP-K
COLOR RELIABILITY

As the top# reliable color set problem iNP-hard, we develop
two greedy baselines, as well as a more effective and effikeiris-
tic solution that provides a good approximation to our peafl

3.1 Individual Top-k: First Baseline

Our individual topk algorithm estimates the reliability between
the source and the destination nodes attained by each etigerc
dividually. In other words, we comput@y., (s, t) for every edge-
colorc € L. We report the topge edge colors that achieve the
highest reliability individually.

Time Complexity. For each color, we can estimate reliability by
applying theMC sampling technique. If we require totl itera-
tions of MC sampling in order to get a good estimate, then the time
complexity to compute the reliability for each color is givby:
O(K(n+e€)). Here,n ande are the number of nodes and edges in
the uncertain graph, respectively. Therefore, the ovedtiplex-

ity of our individual top# baseline algorithm i©(|C|K (n+¢€) +
|C|log k), the last term is due to finding the tdpeolors based on
individual reliability values.

Difficulties. The individual topk algorithm suffers from several
shortcomings, which are both accuracy and efficiency-drive

e This baseline algorithm is unable to capture the contrilputi
of the paths that consist of multiple edge-colors. For exam-
ple, in Figure 1(a), the individual reliability attained bgach
of the three colors i9; and therefore, if we are to select
the top2 color-set, it will be a random selection by our first
baseline. However, in reality, the ta@peolor set is{c1, c2}.

e Forlarge-scale graph datasets, M@ sampling itself is very
inefficient [9]; and performing such sampling f@r| times,
that is, one for each edge-color causes scalability bettlen

3.2 lterative Hill-Climbing: Second Baseline

Our iterative hill-climbing baseline approach attemptsaving
the accuracy bottleneck of the individual témlgorithm. At each
iteration of our hill-climbing algorithm, we add the colef to C1
that maximizes the marginal gain in terms of reliability gjivthe
partial setC, which was already computed in the previous itera-
tions. Formally,

" = argmax[Re, u(ey (s, 1) — Rey (s, 1)) 4)

ceC\Cq

We performk iterations to identify the to-reliable color set.

Time Complexity. The time complexity of each iteration of our
hill-climbing algorithm isO(|C| K (n + €)). Since, we require to-
tal k iterations, the overall complexity of our second baselme i
O(|C|kK (n +e€)).

Difficulties. The iterative hill-climbing method also suffers from
both accuracy and efficiency issues.

e Our second baseline perforC sampling over the entire
graph for|C|k times. Hence, this is even slower than our
first baseline method.

e Although the iterative hill-climbing algorithm partialgolves
the accuracy issue of our first baseline, the issue is stiigamt
in the initial phases of the algorithm. For example, in Fig-
ure 1(a), the individual reliability attained by each of the
three colors id). Therefore, in the first iteration of our hill-
climbing method, it will perform a random selection. If our
algorithm selectgs as the first color irC, then the second
selected color would be;. One may note that the tdpre-
liable color set is{ci, c2}, while the iterative hill-climbing
may find the sefci, cs}, which is a sub-optimal choice. We
refer to this issue as theold-start” problem.

3.3 Most-Reliable-Path based Heuristic

We finally introduce our most-reliable-path based hewuriap-
proach that eliminates the efficiency bottleneck of the tweds
lines. We follow a two-step approach as discussed below.

Most Reliable Paths SelectionGiven an uncertain, edge-colored
graphG = (V, E, L, P), a sources € V, and a destination

V', we first conver into an edge-colored, uncertain, multi-graph
G’ as follows. For each edgé:,v) in G, if the edge-color set
C(u,v) ={ec1,c2,...,ci} hastotak colors, we add edges|ei, ez,
...,e}, with colorsci, ca, . . ., ¢, respectively, between andv

in the multi-graphg’. Each newly constructed edgegis assigned a
probability: P(e;) = P((u,v)|c;). One may note thaf andG’ are
equivalent in terms of our problem. Next, we select theitapest
reliable paths from sourceto destinatiort in G’, where the reli-
ability of a path is defined as the product of the edge-prditiaisi
along that path. The main intuition behind selecting theitapost
reliable paths is that the reliability between two nodesaften be
approximated well by a collection of the tepmost-reliable paths
between those two nodes [4]. The value of the parametgide-
termined empirically, such that the inclusion of the {ep+ 1)-th
reliable path does not significantly increase the religbitom s to

t that was already achieved via the subgraph induced by the top
most reliable paths.

The top+ most reliable paths fromto ¢ can be obtained by first
converting the uncertain, multi-graglf into an edge-weighted,
multi-graphG” as follows. Each edge with probability P(e) in
G’ is assigned a weight—log P(e)} in G”. Therefore, the top-
shortest paths ig” will be the tops most reliable paths ig’. We
next apply the fastest known algorithm by Eppstein et. 3lif5
order to find the top-shortest paths (with cycles) @, which has
time complexityO(|Cle + nlogn + r). Here,|C|e denotes the
maximum possible number of edges in the multi-graph

Iterative Path Inclusion. We formally define our iterative path
inclusion problem as follows.

PROBLEM 2 (ITERATIVE PATH INCLUSION). Given a setP
of the topr most reliable paths from to ¢ in G’, find the subset
P1 C P, such that the reliabilityRel», (s,t) from s to ¢, via the



Algorithm 1 Iterative Path Inclusion Algorithm Freebase[7] contains only edge-colors. Thus, we assign edge-
Require: Top-- most-reliable path s@® betweens to ¢ in ¢, budgetk on probabilities inFreebasewith uniform distribution from(0, 1).

the number of colors Accuracy and Efficiency: We compare the accuracy and efficiency

Ensure: A subset of pathg?; C P that maximizesRelp, (s,t), while . L ! .
total no. of edge-colors i, less thank 1 of our reliable-path based heuristic with two baselinesahlés 2,

LP=6 3, and 4. Each result is reported as an average &@euniformly
2: while total no. of edge-colors i, less thark do selected source-destination pairs. The number ofrtppths for
3. P* =argmaxpcp\p, Relp,u(py(s,t), our reliable-path based heuristic is seRfisas increasing it more
such that total no. of edge-colors and P* less thark than that value does not significantly increase the reltstile-
‘51 en;)\lfvrjlg)l uiprT} tween the source-destination pair. The numbeMoite Carlo
6 outputPy samples is fixed as000 [9]. In all our experiments, we find that

the reliable-path based method is several orders of matmfaster
compared to the second baseline, while it still achievedaimeli-
ability from the source to the destination node. Also, thiabdity
Data | #Node ~ #Edge  #Color  Avg. # Color Edge Prob: achieved by reliability-path based method and by the sebasd-

Table 1:Graph Dataset Characteristics

Set per Edge Mean, SD, Quarties line is much higher than that of the first baseline.
Freebase | 28483132 46708421 5428 1 0.50, 0.24, {0.250, 0.500, 0.750}
BioMine | 1045414 6742943 20 1 0.27,0.17,{0.116, 0.216, 0.363} o . . .
Flixter 29357 280517 10 4 0.17, 0.26, {0.003, 0.056,0.212} Table 3:Avg. Reliability and Efficiency with Varying Top-Ksreebase
Table 2:Avg. Reliability and Efficiency over Datasets; Top&k= Reliability Running Time (Sec)
Reliabil Running Time (Sec) Top-k | Basel Base2 Rel-Path | Basel Base2 Rel-Path
eliability unning Time (sec
Datasets | Basel Base2 Rel-Path | Basel  Base2  Rel-Path fO 851 821 85; 1%2 %é;gg gg
Freebase| 0.21 0.21 0.22 104.9 1278.0 0.6 15 0.21 0.21 0.23 120.0 3835.0 0.6
BioMine 0.21 0.38 0.35 4240.7  341960.5 27.5 20 0.21 0.21 0.23 139.9 5112.0 0.7
Flixter 0.29 0.62 0.53 1.3 15355.6 0.99

Table 4: Avg. Reliability and Efficiency with Varying Distance from

subgraph induced by the pathsh, is maximized; while the total Source to DestinatiorBioMine, Top-k=5

number of colors on the edges of pathsAindoes not exceekl.

Distance Reliability Running Time (Sec)
arg max Relp, (s,t) (#hop) | Basel Base2 Rel-Path | Basel Base2  Rel-Path
P1EP 7] 030 053 0.46 | 36150 283621.0 19.1
such that | Ueep, C(e)| < k (5) 4 012 023 023 | 4865.0 4003000  35.8

Unfortunately, our iterative path inclusion problemNeP-hard;
and it is neither sub-modular, nor super-modular with respe 5. CONCLUSIONS
the inclusion of paths. We omit the details of the proof due to
limitation of space. Next, we design an efficient heuriskipathm
(Algorithm 1) for the iterative path inclusion problem.

Our heuristic procedure works in successive iterationseakth
iteration, we add the patR™* to P; that maximizes the marginal
gain in terms of reliability given the partial sB%, that was already
computed in the previous iterations. While selecting thi g
in the current iteration, we also ensure that the total nurobeol-
ors used in the path®; U { P~} is no more thark. Finally, we
terminate our algorithm either when there is no path lefhistop- 6. REFERENCES
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