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Abstract

Handling microarray data is particularly challenging
mainly due to the high dimensionality of such data, which
demands for computer-aided methods, and to the intrinsic
difficulty of devising notions of proximity between spots of
array traps.

In this paper, we propose a new approach to model-
ing the probe-level uncertainty in microarray data that al-
lows for a more expressive representation of the data and
a more accurate processing. This approach is essentially
based on a recently proposed method for uncertain data
clustering. This method lies in a centroid-linkage-based ag-
glomerative hierarchical algorithm, named U-AHC, and an
information-theoretic-based distance measure between un-
certain data [8]. We have conducted experiments on four
large microarray datasets, in order to assess effectiveness of
the proposed clustering method. Experimental results have
shown high quality results in terms of compactness of the
clustering solutions.

1 Background

A major goal in genomics is to discover gene relation-
ships and their role in diseases (functional genomics). DNA
microarray is a technology used in molecular biology and
medicine which is able to trap and measure the relative
quantity of a large number of genes with a single experi-
ment. Probes that are able to trap genes (targets) consist of
thousands of microscopic spots organized as a matrix and
placed on a glass or silicon chip. The probes-target hy-
bridization is quantified through techniques based on flu-
orescence. When an experiment is performed, the spots
of the microarray matrix generate intensity values, which
measure the expression levels of the genes. Recently, the
Affymetrix company introduced an advanced chip version,
called Human Gene 1.0 ST chip, by which the analysts

can explore the whole mRNA transcript in a single experi-
ment [18].

Microarray data analysis is challenging. In particular,
there are two major issues to face. A first issue is related
to the high dimensionality of microarray data, which makes
it necessary to resort to computer-based methods. Another
issue is that the spots of the array trap information gener-
ally do not have a straightforward meaning; rather, the spots
have to be compared and analyzed by possibly using statis-
tical techniques.

Many approaches to microarray data analysis have been
proposed by the research community [6]. Most of them are
essentially based on data mining techniques, in particular
clustering methods [7, 9]. Clustering allows for understand-
ing the huge mass of data in microarrays by grouping them
in homogeneous subsets (clusters). In this way, cluster anal-
ysis aims to discover natural structures within the data and
to help the analyst in identifying common structures and
patterns in microarrays; for instance, finding similar expres-
sion patterns (i.e., co-expressed genes) which are related to
cellular functions.

Microarray clustering approaches can be divided into
three main categories [10]: (i) gene-based clustering, which
treats genes as objects and samples as clustering features;
(ii) sample-based clustering, where samples are the objects
to be clustered and genes are the features; (iii) co-clustering
approaches, where genes and samples are treated symmetri-
cally (samples and genes can be both objects and features).

After several years of quantitative measurements of mi-
croarray probe-level data, new models have been proposed
in order to manage the uncertainty of gene expression lev-
els both in a single chip and across multiple chips. A novel
probabilistic modeling approach is presented in [15], where
the binding affinity of probe-pairs across multiple chips is
modeled through a probabilistic model using Gamma dis-
tributions. In [14], a gene expression clustering algorithm
has been proposed, which exploits the probabilistic model-
ing described above in order to improve performances w.r.t.



classic techniques.
In this paper, we propose a new approach to modeling

probe-level uncertainty in microarray data. This approach is
based on a study originally presented in [8], in which prob-
abilistic models are employed to allow for a more expres-
sive representation of the data and a more accurate process-
ing. More precisely, uncertain data objects are modeled as
probability distributions (pdfs). An information-theoretic-
based distance measure is used to compare uncertain data
objects, and the clustering task is performed by means of
a centroid-linkage-based agglomerative hierarchical algo-
rithm, named U-AHC. In U-AHC, the cluster merging step
is accomplished by a centroid-linkage criterion [17] which
has the following main features: (i) cluster prototypes (i.e.,
cluster centroids) are computed as mixture densities that
summarize the pdfs of all the objects in the clusters, and
(ii) the pair of closest clusters is chosen according to an
information-theoretic measure that computes the distance
between the cluster prototypes. The centroid-linkage-based
criterion does not require a notion of distance between the
objects to be clustered, unlike other traditional linkage cri-
teria in agglomerative hierarchical clustering. This allows
us to avoid defining a notion of distance between uncertain
objects, which is crucial in uncertainty similarity detection;
instead, the adoption of cluster prototypes as mixture densi-
ties enables a notion of information-theoretic distance mea-
sure that exploits an advantageous characteristic of the clus-
ter prototypes: the overlaps between the cluster prototypes’
domain regions are generally larger than the overlaps be-
tween the individual objects’ regions.

We have tested the U-AHC algorithm on four large mi-
croarray datasets, and evaluated performance in achieving
effective clustering. Experimental results have shown that
U-AHC achieves high results in terms of compactness of
the clustering solution.

The rest of the paper is organized as follows. Section 2
introduces the data uncertainty modeling. Section 3 de-
scribes the clustering strategy, (i) the definition of cluster
prototypes as new uncertain objects that summarize the fea-
tures of all the objects in each cluster, (ii) an information-
theoretic-based distance measure, which is particularly suit-
able for uncertain objects, and (iii) the scheme of a hi-
erarchical clustering algorithm for uncertain objects (U-
AHC). Section 4 describes experimental analysis and shows
the clustering results obtained by U-AHC on microarray
datasets. Finally, Section 5 concludes the paper.

2 Modeling uncertainty

Uncertain data objects are traditionally represented by
using either a multivariate probabilistic model or a univari-
ate probabilistic model.

In a multivariate uncertainty model, an m-dimensional

uncertain object is defined in terms of an m-dimensional re-
gion and a multivariate probability density function, which
stores the probability according to which the exact represen-
tation of the object coincides with any point in the region. In
a univariate uncertainty model, an m-dimensional uncertain
object has, for each attribute, an interval and a univariate
probability density function that assigns a probability value
to any point within the interval. Formally, this is expressed
by the following definitions.

Definition 1 (multivariate uncertain object) A multivari-
ate uncertain object o is a pair (R, f), where R = [l1, u1]×
· · ·× [lm, um] is the m-dimensional region in which o is de-
fined and f : <m → <+

0 is the probability density function
of o at each point ~x ∈ R, such that:

∫

~x∈R

f(~x)d~x = 1 and
∫

~x∈<m\R

f(~x)d~x = 0

Definition 2 (univariate uncertain object) A univariate
uncertain object o is a tuple (a(1), . . . , a(m)). Each
attribute a(h) is a pair (I(h), f (h)), for each h ∈ [1..m],
where I(h) = [l(h), u(h)] is the interval of definition of a(h),
and f (h) : < → <+

0 is the probability density function that
assigns a probability value to each x ∈ I(h), such that:

∫

x∈I(h)

f (h)(x)dx = 1 and
∫

x∈<\I(h)

f (h)(x)dx = 0

3 Clustering uncertain objects

3.1 Uncertain prototype

An uncertain prototype, or simply prototype, is seen as
a new uncertain object computed from a set of uncertain
objects, which properly summarizes the features of all the
objects in the set. More precisely, an uncertain prototype is
represented by mixture densities from the pdfs associated to
each object in the set to be summarized.

Definition 3 (multivariate uncertain prototype) Let C =
{o1, ..., on} be a set of multivariate uncertain objects,
where oi = (Ri, fi), Ri = [li1 , ui1 ] × . . . × [lim , uim ],
for each i ∈ [1..n]. The multivariate uncertain prototype of
C is a multivariate uncertain object PC = (RC , fC), where

RC=
[

min
i∈[1..n]

li1 , max
i∈[1..n]

ui1

]
×· · ·×

[
min

i∈[1..n]
lim , max

i∈[1..n]
uim

]
,

fC(~x) =
1
n

n∑

i=1

fi(~x)



Definition 4 (univariate uncertain prototype) Let C =
{o1, ..., on} be a set of univariate uncertain objects, where
oi = ((I(1)

i , f
(1)
i ), . . . , (I(m)

i , f
(m)
i )), I

(h)
i = [l(h)

i , u
(h)
i ],

for each h ∈ [1..m], i ∈ [1..n]. The univariate un-
certain prototype of C is a univariate uncertain object
PC = ((I(1)

C , f
(1)
C ), . . . , (I(m)

C , f
(m)
C )) such that, for each

h ∈ [1..m]:

I
(h)
C =

[
min

i∈[1..n]
l
(h)
i , max

i∈[1..n]
u

(h)
i

]
,

f
(h)
C (x) =

1
n

n∑

i=1

f
(h)
i (x)

3.2 Distance between uncertain proto-
types

To define a distance measure between uncertain proto-
types, we employ a function that exploits the full infor-
mation stored in the pdfs. Two of the most frequently
used distance measures between probability densities are
the Kullback-Leibler divergence [13, 12] and the Cher-
noff distance [5]. These measures fall into the Ali-Silvey
class of information-theoretic distance measures [2] and
have been widely used in several application contexts,
such as signal processing, pattern recognition, and speech
recognition [1, 3]. However, Kullback-Leibler divergence
and Chernoff distance suffer from some drawbacks—e.g.,
Kullback-Leibler divergence is not symmetric, whereas
Chernoff distance is typically hard to compute; also, both
the measures do not satisfy the triangle inequality.

Within this view, the adopted definition of distance be-
tween prototypes exploits a measure based on the Bhat-
tacharyya coefficient [4, 11], which is defined as follows:

ρ(p(~x), q(~x)) =
∫

~x∈<m

√
p(~x) q(~x) d~x (1)

The original definition of ρ in [4] considers the pdfs p
and q as two multinomial populations, each one consist-
ing of k classes with associated probabilities; also, ρ has
a geometric interpretation: it can be seen as the cosine be-
tween the two vectors for p and q, whose components are
the square root of the probabilities of the k classes that com-
pose p and q. This interpretation also holds in the extended
definition reported in Equation (1), which aims to define the
Bhattacharyya coefficient for continuous pdfs.

Based on the Bhattacharyya coefficient, several distance
measures can be defined [11]. In this work, we use the fol-
lowing measure

B(p(~x), q(~x)) =
√

1− ρ(p(~x), q(~x)) (2)

which has a number of advantages w.r.t. other Bhat-
tacharyya distances, such as the commonly used−log ρ def-
inition. In particular, the Bhattacharyya distance in Equa-
tion (2) obeys the triangle inequality, ranges within the in-
terval [0,1], and unlike the Chernoff distance (which is a
more general case), it is easier to compute and satisfies the
additive property even if the random variables are not iden-
tically distributed.

We now provide the definition of distance measure in
both cases of multivariate and univariate uncertain proto-
type [8].

Definition 5 (multivariate uncertain prototype distance)
Given a set D of multivariate uncertain objects, let
PCi

= (RCi
, fCi

) and PCj
= (RCj

, fCj
) be the multivariate

uncertain prototypes of the sets Ci, Cj ⊆ D, respectively.
The multivariate uncertain prototype distance between PCi

and PCj
is defined as

∆(PCi ,PCj )=γ ∆′(PCi ,PCj )+(1−γ) ∆′′(PCi ,PCj ) (3)

where
∆′(PCi ,PCj ) = B(fCi , fCj ),

∆′′(PCi ,PCj ) =
1

Emax(D)
d(E[fCi ], E[fCj ])

γ =
V(RCi ∩RCj )

min{V(RCi),V(RCj )}
In Definition 5, d is a function that measures the distance

between m-dimensional points (e.g., Euclidean norm), E[f ]
denotes the expected value of the pdf f , V(R) is the hyper-
volume of the m-dimensional region R, and Emax is a nor-
malization term, which is defined as:

Emax(D) = max
ou,ov∈D

d(E[fu], E[fv])

It should be noted that ∆ ranges within [0, 1], since ∆′

and ∆′′ range within [0, 1] in turn.
Let us now explain the reasons for introducing the two

terms ∆′ and ∆′′ in Equation (3). The Bhattacharyya dis-
tance (Equation (2)) compares two pdfs by considering their
portions defined over a common event space (i.e., common
domain region). Thus, if the event spaces of the two pdfs
do not have any intersection, the Bhattacharyya distance
does not work, i.e., it is always equal to one. Although
these cases are quite infrequent because of the way uncer-
tain prototypes are defined, we introduce the term ∆′′ in
Equation (3) to discriminate among those cases by consid-
ering the distance between the expected values of the proto-
type pdfs. We weight the terms ∆′ and ∆′′ by involving the
coefficient γ (ranging within [0, 1]), which aims to quantify
the importance of ∆′ and ∆′′ in the definition of ∆. In par-
ticular, γ is proportional to the width of the domain region



shared between the prototypes to be compared. This defi-
nition of γ represents a reasonable choice, since the larger
the portion of the pdfs involved into the Bhattacharyya dis-
tance calculation, the smaller the need for comparing the
pdfs by also considering the corresponding expected values,
and vice versa.

Definition 6 (univariate uncertain prototype distance)
Given a set D of univariate uncertain objects,
let PCi = ((I(1)

Ci
, f

(1)
Ci

), . . . , (I(m)
Ci

, f
(m)
Ci

)) and

PCj = ((I(1)
Cj

, f
(1)
Cj

), . . . , (I(m)
Cj

, f
(m)
Cj

)) be the univari-
ate uncertain prototypes of the sets Ci, Cj⊆D, respectively.
The univariate uncertain prototype distance between PCi

and PCj
is defined as

∆(PCi
,PCj

) = fdist(δ(1), . . . , δ(m)) (4)

where

δ(h) = γ(h) B(f (h)
Ci

, f
(h)
Cj

)+

+(1− γ(h))
( 1

E
(h)
max(D)

∣∣∣E
[
f

(h)
Ci

]
− E

[
f

(h)
Cj

]∣∣∣
)

and

γ(h) =
V(I(h)

Ci
∩ I

(h)
Cj

)

min{V(I(h)
Ci

),V(I(h)
Cj

)}
,

E(h)
max(D) = max

ou,ov∈D
|E[f (h)

u ]− E[f (h)
v ]|

for each h ∈ [1..m] , and fdist : <m → < is a function
that computes a scalar value from the components of an m-
dimensional vector.

3.3 The U-AHC algorithm

In this section we present the AHC-based algorithm for
clustering uncertain objects, named U-AHC. The outline of
U-AHC is given in Algorithm 1.

The input for U-AHC algorithm is a dataset D of n un-
certain objects, whereas the output is a hierarchy of clusters
D. The algorithm follows the classic AHC scheme. Ini-
tially, every object in D forms a cluster (line 1). In the main
cycle of the algorithm (lines 5-8), the two closest clusters
are merged to form a new partition C (lines 5-6). C is then
added to the set D as a new level (clustering) of the hierar-
chy (line 6). The cycle is iteratively repeated until the whole
hierarchy has been built, i.e., the number of clusters in the
current clustering C is equal to one (line 9).

The merge score used to decide for the pair of clusters
to be merged at each step of the U-AHC algorithm (line 5)

Algorithm 1 U-AHC
Input: a set of uncertain objects D = {o1, . . . , on}
Output: a set of partitions D

1: C ← {{C1}, . . . , {Cn}} such that Ci = {oi}, ∀i ∈ [1..n]
2: PCi ← oi,∀i ∈ [1..n], as initial cluster prototypes
3: D ← {C}
4: repeat
5: let Ci, Cj be the pair of clusters in C such that

1
2
(∆(PCi∪Cj ,PCi) + ∆(PCi∪Cj ,PCj )) is minimum

6: C ← {C ∈ C : C 6= Ci, C 6= Cj} ∪ {Ci ∪ Cj}
7: D ← D ∪ {C}
8: update prototypes PC , C ∈ C
9: until |C| = 1

employs the notions of distance between uncertain proto-
types (Definition 6). In particular, for any pair of clusters
Ci, Cj belonging to the current clustering C, we compute
the prototype of the cluster given by the union of the objects
in Ci and Cj , and evaluate the uncertain distances between
this prototype and the prototypes of Ci and Cj . We use the
mean of these distances as a merge score, since intuitively
the smaller these distances, the smaller the error of merging
Ci and Cj to form a new cluster.

We compute the integrals involved into the distances cal-
culation by taking into account lists of samples (s) derived
from the pdfs. For this purpose, we employed the classic
Monte Carlo sampling method. 1

4 Experimental evaluation

The U-AHC algorithm was evaluated in performing ef-
fective clustering of microarray data with a probe-level un-
certainty. In this section we first discuss the evaluation
methodology used in this work, which includes a descrip-
tion of the datasets, the uncertainty modeling, and the mea-
sures to assess the quality of the clustering solutions. Then,
we present preliminary experimental results.

4.1 Evaluation methodology

Datasets. Experiments were performed on four large mi-
croarray datasets, each of which describes the expressions
of thousands of genes in biological tissues, as shown in Ta-
ble 1.

Three datasets, namely Leukaemia, Neuroblastoma
and Myelodysplastic are cancer tissue data of humans,2

while Mouse is about mouse tissues.3 Leukaemia de-
1We used the SSJ library, available at

http://www.iro.umontreal.ca/∼simardr/ssj/
2Cancer Program dataset page of the Broad Institute of MIT and Har-

vard, available at http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
3Microarray Data resource page of the European Bioinformat-

ics Institute (EMBL-EBI), available at http://www.ebi.ac.uk/microarray-
as/ae/browse.html



Table 1. Microarray datasets used in the ex-
periments

dataset # of genes # of attributes
Leukaemia 22,690 21
Neuroblastoma 22,282 14
Myelodysplastic 22,277 25
Mouse 45,101 10

scribes the transformation process of leukaemia stem cells
initiated by MLL-AF9 fusion gene. Neuroblastoma con-
tains expression-based screening results for neuroblastoma
differentiation. In Myelodysplastic, somatic chromosomal
deletions in cancer are measured by means of an RNA-
mediated interference (RNAi)-based approach to discov-
ery of the 5q− disease gene, which is a subtype of the
myelodysplastic syndrome characterized by a defect in ery-
throid differentiation. Mouse contains a transcription pro-
filing of mouse cochlea Reissner’s membrane (RM). This is
grown as explants and treated with dexamethasone and then
subject to RNA extraction to investigate gene expressions.

Uncertainty models. The probe-level uncertainty for mi-
croarray datasets was extracted by exploiting the multi-
mgMOS method [16].4 For each dimension, the multi-
mgMOS method yields a set of information that includes
mean, standard deviation and principal percentiles (i.e., 5%,
25%, 50%, 75%, 95%).

In this work, the information outputted by multi-
mgMOS was exploited to model uncertainty according to
the univariate model (Section 2). In particular, the univari-
ate pdfs of each uncertain object (i.e., each row in the mi-
croarray matrix) was built by employing two different meth-
ods:

• Normal method, where Normal pdfs were easily de-
rived from a combination of mean values with standard
deviations;

• Percentiles-based method, where suitable statistical
models were involved to fit pdfs to percentiles [19].

Clustering validity criteria. We performed a gene-based
clustering in such a way that each group describes a partic-
ular macroscopic phenotype, such as cancer expressions or
biological states [10]. Since there is no available reference
classification for such data, we resorted to internal validity
criteria based on the cophenetic correlation coefficient [20],

4We used the Bioconductor package PUMA (Propa-
gating Uncertainty in Microarray Analysis), available at
http://www.bioinf.manchester.ac.uk/resources/puma/

Table 2. Accuracy results for univariate mod-
els

dataset pdf form cophenetic
value

Leukaemia Normal 0.76
Percentiles-based 0.82

Neuroblastoma Normal 0.67
Percentiles-based 0.75

Myelodysplastic Normal 0.80
Percentiles-based 0.89

Mouse Normal 0.84
Percentiles-based 0.92

which ranges between [0,1] and evaluates a dendrogram ac-
cording to how it preserves the pairwise distances between
the original data points. Intuitively, the higher the cophe-
netic correlation value for a dendrogram, the higher is the
compactness and the better is the quality. This measure is
particularly suitable for biological data as it is widely used
in biostatistic fields, e.g., to assess the cluster-based models
of DNA sequences or to evaluate taxonomic models.

Formally, let D = {o1, . . . , on} be a dataset of n objects
and let D be the dendrogram solution produced by a hier-
archical clustering algorithm (i.e., a hierarchy of clusters).
The cophenetic correlation coefficient (c(D, D)) is defined
as

c(D, D)=

∑
i<j(dE(oi, oj)− dE)(t(oi, oj)− t)√[∑

i<j(dE(oi, oj)−dE)2
][∑

i<j(t(oi, oj)−t)2
]

for all i, j ∈ [1..n]. In the formula above, dE(oi, oj) de-
notes the Euclidean distance between the objects oi and oj ,
while t(oi, oj) is the dendrogrammatic distance of such ob-
jects, which indicates the level of the dendrogram at which
the objects oi and oj are first joined together. The values dE

and t represent the average of the dE(oi, oj) and the average
of the t(oi, oj), respectively.

4.2 Preliminary results

Table 2 summarizes the quality results in terms of cophe-
netic correlation for each dataset and for each pdf. It can be
noted that the U-AHC algorithm obtained good accuracy
results on all the datasets, from 67% to 84% with Normal
pdfs. Also, the uncertainty generation based on percentiles
generally led to higher quality results than the previous case
(about 8% on average); this improvement can be easily ex-
plained by the fact that percentiles provide a more refined
representation of the uncertainty than the summarized in-



formation of mean value and standard deviation used for
Normal pdf modeling.

5 Conclusion

We addressed the problem of clustering microarray data
by adopting a probabilistic approach which is conceived to
model the (probe-level) uncertainty in the data. The pro-
posed approach lies in a centroid-linkage-based agglomer-
ative hierarchical algorithm, named U-AHC. The U-AHC
algorithm is equipped with a notion of uncertain cluster pro-
totype represented as a mixture of the probability distribu-
tions associated to the objects belonging to any given clus-
ter. Also, the cluster merging criterion in U-AHC exploits
a new information-theoretic-based distance between uncer-
tain prototypes.

The U-AHC algorithm has experimentally shown to
achieve significant accuracy in identifying clustering solu-
tions that are well-suited to capture the underlying gene-
based patterns of microarray data.
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