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Abstract

This paper presents a methodology to mine spectra data based on time-series analysis.
MALDI-TOF spectra are modelled as time series using a compact yet feature-rich represen-
tation scheme. Experiments show that classifying mass spectrometry series is effective and
can be useful for identifying peaks in spectra that can be associated to discriminant proteins.

1. Introduction

Mass spectrometry (MS) is a technique allowing to determine with high accuracy the
molecular weight of chemical compounds, ranging from small molecules to large, polar
biopolymers [2]. MS is able to separate gas phase ions and produce a spectrum, that is
a (large) sequence of value pairs. Each pair contains a measured intensity and a mass to
charge ratio (m/z ), which depend on the quantity and the molecular mass of the detected
biomolecule, respectively. Macromolecules contained in the original compounds can be
identified by associating (portion of) proteins to their peak expression in a spectrum.

In this work we consider data generated from Matrix-Assisted Laser Desorption / Ioni-
sation - Time Of Flight mass spectrometry (MALDI-TOF MS) [3]. Spectrometry output is
represented as raw data containing a (large) number of value pairs (m/z, intensity). Figure
1 shows a fragment of raw spectrum coded into a text format.

Dimensions of raw data span from a few kilobytes to a few gigabytes per spectrum, thus
automatic data manipulation is mandatory. The problem of dealing with large amounts
of MS data arises from the need for identifying differently expressed proteins or peptides
in different samples. The analysis of several spectra coming from biological samples be-
longing to different subjects (e.g. healthy and diseased) focuses on to identify discriminant
values in spectra (m/z, intensity couples corresponding to biomarkers) that are responsible
of diseases. Several approaches for knowledge discovery from spectra have been recently
developed. In [1], data mining techniques have been used to identify discriminants in a fe-
male population, distinguishing ovarian cancer diseased from healthy ones. Similarly, data
mining techniques have been applied in [7] for surface-enhanced laser desorption/ionization
mass spectrometry (SELDI MS) data, in order to identify discriminants in rectal cancer
disease. In [6] machine learning algorithms have been used to identify biomarkers in SELDI
MS data generated on tens of patients to figure out cerebral accident discriminants.

The focus of this paper is on applying data mining techniques to analyze MALDI spectra
data according to discriminant biomarkers which can be associated to different peaks in
MALDI data. The key idea underlying our approach is to model spectra as time series. A



Figure 1. Mass spectrum loaded in a text raw data

time series is a list of (real) numeric values upon which a total order based on timestamps
is defined. Knowledge discovery and management of time series data is a fruitful area of
research involving different domains, such as speech recognition, biomedical measurement,
financial and market data analysis, telecommunication and telemetry, sensor networking,
motion tracking, and meteorology.

We propose a framework for preprocessing, modelling and classifying MALDI spectra
based on a new time series representation, which is able to realize a good trade-off be-
tween compactness and feature-richness. The ultimate objective is to automatically iden-
tify groups of spectra with similar profiles by means of a clustering task. Preliminary
experimental evaluation was conducted on the ovarian cancer data set used in [1] and
on a significant data set generated at the University of Catanzaro proteomics laboratory.
The results obtained show that the proposed framework exhibits good effectiveness of data
classification.

2. A Framework for Classifying MS Data

Our framework consists of the following modules (Figure 2):

1. MS Data Preprocessing module, which filters out noise from the original raw spectra
while maintaining only significant data features.

2. Time Series Modelling module, which represents the preprocessed MS data into a
time series based model.

3. Classification module, which performs a task of clustering of time series data. Clus-
tering is organizing a collection of objects (spectrum data), whose classification is
unknown, into meaningful groups or clusters, based on interesting relationships dis-
covered in the data. Objects within a cluster will be each other highly similar, but
will be very dissimilar from objects in other clusters.

4. Evaluation module, which is in charge of assessing the quality of clustering results.

2.1. MS Data Preprocessing

Intensity values in MS data may be corrupted by noisy factors. Thus, MS data are
usually subject to a preprocessing phase which aims at cleaning up spectrum noise and
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Figure 2. Conceptual architecture of the framework

contaminants without affecting biological properties. Three main steps are involved in the
process: (i) noise reduction, (ii) identification of valid peaks, and (iii) quantization.

Noise reduction. Each mass spectrum exhibits a base intensity level (baseline) which
varies from point to point across the m/z axis: intensity values that are under the baseline
represent ground noise, and thus are filtered out. The baseline trend is typically approxi-
mated using a linear, logarithmic or hyperbolic model.

Identification of valid peaks. Spectra discrimination is based on the number of peaks
and on the difference in their maximum intensity values. Some peaks in MS data can be
due to instrumental noise. It is critical to identify only valid peaks, since up to 80% of
peaks in a spectrum might be irrelevant with respect to interesting peaks. Since peaks can
be approximated using a Gaussian distribution, a peak is recognized as valid if amplitude
and maximum intensity value in its Gaussian representation fall within specific ranges.

Quantization. Mass spectra can be quantized to reduce the range of possible values and
obtain a further noise reduction. A non-uniform quantization model is used for MS data, in
which quantization step size is larger for intensity values close to ground noise mean value.
A major reason to choice this model is that intensity values close to ground noise mean
value are not commonly useful to identify valid peaks in the spectra.

2.2. Time Series Modelling

A preprocessed mass spectrum is a sequence S = [((m/z)1, I1), . . . , ((m/z)n, In)], where
for each pair the first value refers to the mass to charge ratio and the second one is the
associated intensity value.

A mass spectrum so defined can be trivially modelled as a time series T = [(x1, t1), . . . , (xn,
tn)] whose values xi correspond to the spectrum intensity values Ii, and time steps ti cor-
respond to the (m/z)i values. Indeed, the notion of time implicitly lies in the sequence of
mass to charge values. T can be rewritten as T = x1, . . . , xn when as usual the sampling
period(s) is well specified.

Derivative time series Segment Approximation (DSA). Time series representing
mass spectra are typically high dimensional data. Thus, it is desirable to model such time
series into a compact representation which possibly synthesizes the significant variations in
the time series profile.



For this purpose, we exploit a representation scheme called DSA (Derivative time series
Segment Approximation), proposed in [4]. Using the DSA model, a time series is trans-
formed into a new, smaller sequence by the following main steps: 1) computation of the
first derivatives of the original series to capture its significant trends, 2) identification of
segments consisting of tight derivative points, 3) segment approximation to finally obtain
a lower dimensional still fine-grained representation of the original series.

The derivation step yields a sequence Ṫ = [ẋ1, . . . , ẋn], whose elements ẋi are first deriva-
tive estimates. We use an estimation model that is sufficiently general (i.e. independent of
the underlying data distribution model) and still enough robust to outliers [4].

The segmentation of a time series of length n consists in identifying p−1 points (p ¿ n)
to partition it into p contiguous subsequences of points, i.e. segments, having similar
features. In DSA, the derivative time series Ṫ = [ẋ1, . . . , ẋn] is transformed into a sequence
SṪ = [s1, . . . , sp] of variable-length segments si = [si,1, . . . , si,ki ] = [ẋi1 , . . . , ẋiki

], such that:
i) s1,1 = ẋ1, ii) sp,kp = ẋn for each i ∈ [1..p-1], iii) si,ki immediately precedes si+1,1 in the
time axis. In order to determine the segment delimiters, a segment is grown until it exceeds
an error threshold, and the process repeats starting from the next point not yet considered.
Precisely, a sequence si, for each i ∈ [1..p-1], is identified as a segment if |µ(si)−si+1,1| > ε,
where µ(si) = 1

ki

∑ki
j=1 ẋij denotes the average over the points in si. The segment condition

allows for aggregating subsequent data points having very close derivatives. Parameter ε
can be estimated globally with respect to a given time series, by considering the variance
over the points in the derivative series.

All individual segments of a derivative time series are finally approximated with a syn-
thetic information capturing their respective main features. Each segment si is mapped to
a pair formed by the timestamp ti of the first point (ẋi1) of si and an angle that explains the
average slope of the portion of time series bounded by si. This is mathematically expressed
by the notion of arctangent applied to the mean of the (derivative) points in each segment.

2.3. Classification and Evaluation

The proposed framework is parametric with respect to the clustering scheme. In this
work, we use the well-known agglomerative hierarchical clustering algorithm with group-
average linkage [5]. This algorithm initially forms one cluster for each individual object
(time series), then repeatedly merges the most similar pairs of clusters growing a hierarchy
until a stop criterion is met. In our context, a reference partitioning is available for each
dataset we used. Thus, reaching the desired number of clusters at a hierarchy level can be
naturally used as termination criterion for the algorithm.

Since the availability of reference classifications, evaluating the clustering effectiveness
can be accomplished by assessing how well a clustering fits a predefined scheme of known
classes (natural clusters). We resort to the standard Information Retrieval notions of pre-
cision, recall and F-measure [8].

3. Preliminary Experiments

Main experiments were performed on two datasets: the ovarian cancer dataset publicly
available [1], and a smaller dataset consisting of MALDI data generated at the University
of Catanzaro proteomics laboratory. In both datasets, spectra fall into either the healthy
class or the diseased class.



Figure 3 shows raw and preprocessed spectra of the ovarian cancer dataset. Noise re-
duction was performed considering a linear model for the baseline. A peak was recognized
as valid if its maximum intensity value is at least 2.5 times the corresponding noise inten-
sity value. Quantization step was set to 2,000 counts for intensity values within the range
[0..10,000] and to 500 counts for values greater than 10,000. Moreover, the range of (m/z)
values was reduced to focus only on significant portions of the spectra. In particular, the
cut involved two m/z intervals: the first interval corresponds to intensity values close to
zero (i.e. with m/z ranging within [0..15,000]) and the second one corresponds to inten-
sity values identifying spectrum contaminants such as the polymer between [43,000..56,384]
m/z.
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Figure 3. Ovarian Cancer MS data: on top, raw spectra of (a) control class and
(b) diseased class; on bottom, preprocessed spectra of (c) control class and (d)
diseased class

Clustering results on the ovarian cancer dataset highlighted high effectiveness provided by
the proposed framework. In particular, the expected two classes were well-recognized with
precision, recall and F-measure values measured in 0.88, 0.86 and 0.87, respectively. Note
that such values are sufficiently high (i.e. they are close to 1) proving that our framework
is capable both to identify homogeneous groups of MS data and to separate different data
in distinct classes, according to biomarkers associated to discriminant peaks.

The framework was also tested on the MALDI dataset produced at University of Catan-
zaro. It is worthy to noticing that we encountered different issues in the preprocessing
phase with respect to the ovarian cancer dataset, which are due to their different originat-
ing laboratories. Nevertheless, our framework obtained comparable quality results.



4. Conclusion

We presented a new framework for classifying spectrometry data based on time series
analysis. The framework revealed high capability of classifying datasets and to identify
discriminant peaks. We plan to test and validate the framework on more datasets that will
be generated by our laboratories. Moreover, we are currently investigating how to use the
discovered discriminant peaks to query publicly available protein databases and to identify
biomarkers (proteins) which are potentially responsible of diseases.
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