
Advancing NLP via a distributed-messaging approach

Ilaria Bordino, Andrea Ferretti, Marco Firrincieli,
Francesco Gullo, Marcello Paris, Stefano Pascolutti, and Gianluca Sabena

UniCredit, R&D Department, Italy

{ilaria.bordino, andrea.ferretti2, marco.firrincieli,
francesco.gullo, marcello.paris, stefano.pascolutti, gianluca.sabena}@unicredit.eu

Abstract—Natural Language Processing (NLP) constitutes
a fundamental module for a plethora of domains where
unstructured text is a predominant source. Despite the keen
interest of both industry and research community in developing
NLP tools, current industrial solutions still suffer from two
main cons. First, the architectures underlying existing systems
do not satisfy critical requirements of large-scale processing,
completeness, and versatility. Second, the algorithms typically
employed for entity recognition and disambiguation—a core
task common to all modern NLP systems—are still not well-
suited for deployment in a real industrial environment, for
evident issues of efficiency and result interpretability.

In this paper we present Hermes, a novel NLP tool that
overcomes the two main limitations of existing solutions. By
employing an efficient and extendable distributed-messaging
architecture, Hermes achieves the critical requirements of
large-scale processing, completeness, and versatility. Moreover,
our tool includes an entity-disambiguation algorithm enhanced
with a two-level hashing-based approximation technique to con-
siderably improve efficiency, as a well as a densest-subgraph-
extraction method to increase result interpretability.

I. INTRODUCTION

Text is everywhere. It fills up our social feeds, clutters
our inboxes, and commands our attention like nothing else.
Unstructured content, which is almost always text or at least
has a text component, makes up a vast majority of the data
we encounter. Hence, dealing with text properly is nowadays
a critical problem in a variety of application domains.

Natural Language Processing (NLP) is one of the pre-
dominant technologies to handle and manipulate unstruc-
tured text. NLP is defined as the set of methodologies
and techniques for automated generation and analysis of
pieces of text written in human (natural) language. NLP
tools can solve disparate tasks, from marking up syntactic
and semantic elements (e.g., named entity recognizers, part-
of-speech (POS) taggers, syntactic parsers, semantic role
labelers), to language modeling or sentiment analysis.
Motivations. Due to its wide applicability and usefulness,
NLP has attracted great interest by both industry and re-
search community in the last decade. Attention has been
devoted to developing real-world practical systems [1]–[5]
and algorithms for NLP tasks [6]–[9]. However, current
industrial solutions are still unsatisfactory, as they exhibit
two major limitations.

First of all, existing solutions are typically stand-alone
components aimed at solving specific micro-tasks, rather
than complete systems capable of taking care of the whole
process of extracting useful content from text data and
making it available to the user via proper exploration tools.
Moreover, most of them are monolithic, designed to work
on a single machine, thus they are not really suitable for
distributed environments and large-scale data processing.

The second main limitation is an algorithmic one. A core
task for NLP consists in entity recognition and disambigua-
tion (ERD), that is recognizing entity mentions in a piece
of unstructured text (entity recognition) and correctly linking
them to entities of a knowledge base (entity disambiguation)
[9]. This is indeed a fundamental task that has been well
studied [10]–[15]. However, some critical points make it
not yet amenable to be deployed in a real-world industrial
context. The first weakness concerns efficiency, as existing
entity-linking methods typically take quadratic time in the
number of 〈mention–candidate entity〉 pairs in the input text.
This is a critical issue, which may easily cause ERD to
become the bottleneck of the whole system, thus making
the aforementioned effort in designing efficient architectures
useless. As a second weakness, most of existing ERD
approaches just identify entities and present them to the
user. However, sole entities, without any structure and/or
semantic organization, do not provide consciousness of the
meaning hidden in the underlying text, thus resulting not
well-explanatory from a user perspective.

Contributions. In this paper we present Hermes,1 a novel
NLP tool that overcomes the aforementioned state-of-the-
art limitations. As a first contribution, Hermes advances
existing work with the following architectural features:
• Capability of large-scale processing. Hermes is able

to work in a distributed environment, deal with huge
amounts of text and arbitrarily large resources usually
required by NLP tasks (e.g., knowledge bases, vocab-
ularies, ground-truth annotations), and satisfy different
demands, being them real-time or batch.

• Completeness. We design an integrated, self-contained

1In Greek mythology Hermes is a messenger of the gods. This is an allusion to
the distributed-messaging architecture at the base of the proposed tool.

toolkit, which handles all phases of a typical NLP
application, from fetching of different data sources
to producing annotations, storing/indexing the content,
and making it available for smart exploration/search.

• Versatility. While being complete, the proposed tool has
flexibility as another of its main qualities. The tool is
indeed designed as a set of independent components
that are fully decoupled from each other and can be
easily replaced or extended.

To accomplish the above features, we design an effi-
cient and extendable architecture, consisting of independent
modules that interact asynchronously through a message-
passing communication infrastructure. Each phase of the
NLP process is assigned to one or more specific components
that are oblivious of the rest of the architecture. The compo-
nents communicate with each other via messages exchanged
through a queuing system. Each component may act like a
producer of messages that are pushed to the queue, and/or
a consumer that reads and processes messages generated by
other consumers. The queues are distributed across different
machines, so that the system can handle arbitrarily large
message-exchanging rates without compromising efficiency.
The underlying persistent storage system is also distributed,
for similar reasons of scalability in managing large amounts
of data and making them available to the end user.

Besides the architectural design novelties, Hermes incor-
porates novel algorithmic solutions for the core NLP task of
entity recognition and disambiguation, thus overcoming the
aforementioned issues of efficiency and interpretability.
• To overcome the efficiency issue, we devise a two-level

hashing approximate solution that achieves high speed-
up (up to two orders of magnitude) with limited accu-
racy loss with respect to state-of-the-art approaches.

• For result interpretability, we define a densest-
subgraph-extraction method to identify semantically-
coherent groups of entities, which provide the user with
the themes of the input text. We add further explanation
to each entity group by including extra-document enti-
ties that are well-explanatory of that semantic context.

As further pros, all Hermes components are implemented
with open-source technologies, and the tool is inherently
multi-lingual. Indeed, Hermes employs automatic language-
detection methods and its core algorithmic component
adopts a language-independent mechanism to solve ERD.

A beta version of the Hermes tool is available at
http://hermes.rnd.unicredit.it:9603. 2

Roadmap. The rest of the paper is organized as follows.
Section II provides a short overview of the literature on
NLP. Section III describes in details architecture and im-
plementation of the proposed tool. In Section IV we discuss
the main algorithms that are currently supported. Section V

2Please request access credentials by email.

highlights some typical usage scenarios. Section VI presents
an experimental evaluation on the main algorithms imple-
mented in the tool. Finally, Section VII concludes the paper
and discusses possible future developments.

II. RELATED WORK

Entity recognition and disambiguation (ERD) is a well-
established NLP task that has received great attention in
the last decade [9]. It consists of two sub-tasks: entity
recognition, i.e., identifying entity mentions in a text, and
entity disambiguation (also known as entity linking), which
deals with linking candidate entity mentions to actual entities
of a given knowledge base (e.g., Wikipedia or Yago).

Entity recognition can be solved retaining n-grams match-
ing some Wikipedia hyper-link anchor text [2], [14], [16],
or resorting to sequential prediction without relying on any
knowledge base [17], [18].

Existing approaches to entity disambiguation can be
broadly classified into voting approaches and graph-based
approaches. In voting methods such as Wikify [16], Illinois
Wikifier [19], TagMe [2], and WAT [14], each mention-entity
pair votes for the correct disambiguation of any other men-
tion, contributing to a disambiguation score that is usually
computed by taking into account the semantic relatedness
between entities [8], [20], [21]. Each mention is eventually
assigned to the entity achieving the highest disambiguation
score. All entity-disambiguation voting methods have time
complexity (at least) quadratic in the number of mention-
entity pairs, as each mention-entity pair contributes to the
score calculation of every other pair in the text.

Graph-based entity-disambiguation methods construct a
graph whose vertices correspond to all mentions and all
candidate entities for each mention, while an edge is drawn
between every pair of entities and between a mention and
its candidate entities. Mention-entity edges are weighted by
the similarity of the context surrounding the mention to the
candidate entity, whereas entity-entity edges are weighted by
semantic relatedness. The disambiguation task is solved by
(i) extracting a densest subgraph maximizing some notion
of density (e.g., minimum degree), and (ii) post-processing
the densest subgraph so as to prune remaining multiple
entities ambiguously assigned to the same mention. This
category includes approaches such as AIDA [11], Babelfy
[13], AGDISTIS [15], and more [10], [12]. Graph-based
disambiguation methods take time (at least) quadratic in
the number of entity-mention pairs, given that semantic
relatedness has to be computed for every pair of candidate
entities to build the initial graph.

Further research includes benchmarking frameworks like
the BAT-framework [22], Dexter [23], or GERBIL [24],
ERD joint with cross-document co-reference resolution [6],
methods for short texts like tweets or web queries [25].

Despite the considerable interest devoted to ERD, state-
of-the-art methods still suffer from major limitations con-

cerning efficiency and result interpretability. Indeed, as dis-
cussed above, all prominent entity-disambiguation methods
have time complexity (at least) quadratic in the number of
mention-entity pairs. At the same time, all such methods
present the identified entities to the user without any seman-
tic organization. We propose solutions to both these issues.

NLP systems currently fall into three main categories: (i)
suites defining proper APIs (in some programming lan-
guages) for common NLP tasks, (ii) tools focusing on
single NLP micro-tasks, and (iii) approaches aimed to unify
existing tools/libraries/services.

The first category includes the popular Stanford Core
[4] and Natural Language ToolKit (NLTK) [3], respectively
a Java- and a Python-based framework of tools for pro-
cessing various natural languages, including libraries for
classification, tokenization, stemming, tagging, parsing, and
semantic reasoning, wrappers for industrial-strength NLP
libraries and easy-to-use interfaces to lexical resources such
as WordNet. Similar in spirit to Stanford Core and NLTK are
Apache Lucene and Solr (https://lucene.apache.org)
and Apache OpenNLP (http://opennlp.apache.org).
Although all these suites simplify the life of developers
of NLP applications, they are clearly far away from being
industrial complete systems capable of handling all phases
of the NLP process like our Hermes. They are libraries that
can be used to develop a system, rather than a system itself.

Solutions in the second category consist of tools for
specific NLP tasks, such as TagMe/WAT [2], [14], AIDA [5],
and Illinois Wikifier [19], all focusing on entity recognition
and disambiguation.Further examples in this category are
DBpedia Spotlight [26], a tool for annotating mentions of
DBpedia resources, and LingPipe (http://alias-i.com/
lingpipe), which employs computational linguistics for
categorizing tweets and annotating them with named entities.
All these tools are closed solutions that are designed to solve
a single NLP task and run on a single machine. They miss
the requirements of large-scale processing, completeness,
and versatility that are at the base of Hermes.

The latter category comprises attempts to programmati-
cally unifying existing NLP tools/libraries/services. This is
the case of The Curator (Illinois) [1], an NLP management
framework designed to easily incorporate any third-party
components, and distribute components across multiple ma-
chines. The Curator is a component management system that
defines a common interface to use and aggregate different
NLP components. It is very different from a complete
industrial system like our Hermes.

III. HERMES: ARCHITECTURE AND IMPLEMENTATION

Hermes is based on persisted, distributed message
queues, which allow for decoupling the components pro-
ducing information from those responsible for storing or
analyzing data. This choice is aimed to achieve an efficient

Figure 1: Architecture of Hermes.

and highly-modular architecture, allowing easy replacement
of modules and simplifying partial replays in case of errors.

Messages are pushed to/read from the queues by a num-
ber of independent modules. Each module is a primitive
computational entity, which listens to a specific queue, and,
upon receiving a message, has the capability of concurrently
making local decisions, like invoking some service or deter-
mining the actions to be performed when the next message
will be received. Each module may act like a producer of
content to be pushed to the queues, consumer of content
taken from the queues, or both. Such a queue-based model is
characterized by inherent concurrency of computation within
and among the various modules, which only interact through
direct asynchronous message passing.

Hermes is implemented in Scala, however the archi-
tecture at the base of the tool allows for incorporation of
components written in any language, as better explained
next. All components are implemented by relying on open-
source technologies. The main modules of Hermes are
depicted in Figure 1 and detailed below.

Queues. We use three distributed message queues, identified
by a name recalling the type of handled message: text,
clean-text, tagged-text, which respectively refer to raw input
text, parsed text (e.g., text resulting from markup removal
in HTML pages), and text enriched with extracted entities
and other types of semantic annotation. Whilst all present
components are written in Scala, we leave the road open for
modules written in different languages by choosing a very
simple format of interchange: all messages pushed to and
pulled from the various queues are encoded as JSON strings.

Message queues in Hermes are implemented as topics
on Apache Kafka.3 We choose Kafka for easy horizontal
scalability and minimal setup.

Producers. These are the modules responsible for retrieving
the text sources to be analyzed, and feeding them into the
system. Each producer fetches information provided by a
specific set of sources, performs some minimal processing
(if needed), and pushes each piece of information, in a fairly
raw content, on the text queue.

3http://kafka.apache.org

Hermes currently implements producers for the sources
listed below, but our flexible architecture allows to plug in
any other type of source with minimal effort.
• Twitter: a long-running producer, which listens to a

Twitter stream and annotates tweets. It uses public API
to monitor user-defined accounts and/or hashtags.4

• News articles: this is a generic article fetcher that
downloads news from the Web following a list of RSS
feeds (provided by the user), and can be scheduled
periodically. To avoid fetching and processing news
more than once, news are referenced by URL, and a
history of seen URLs is kept in a cache.5

• Documents: this producer fetches a generic collection
of documents from some known local or public file-
system directory. It can handle various formats such as
Word and PDF, and, similarly to the aforementioned
article fetcher, maintains a history of seen documents
to avoid unnecessary reprocessing.

• Mail: this producer listens to given email accounts and
processes all received emails.6

Cleaner. This is a consumer module that reads any raw
text pushed on the text queue, performs the processing
needed to extract the pure textual content from the raw
text, and then pushes it onto the clean-text queue to allow
for further processing by other components down the line.
We implement this module using Goose,7 a popular Scala
article extractor, and Apache Tika,8 for content extraction
and language recognition.
NLP. This module consists of a client and a service. The
client listens for incoming texts on the clean-text queue,
asks for NLP annotations to the service, and places the result
on the tagged-text queue. The service provides APIs to all
supported NLP task, from the simplest ones such as tok-
enization or sentence splitting, to complex operations such
as entity recognition and disambiguation, entity explanation,
and sentiment analysis. The service is implemented as an
Akka application.9 All APIs can be consumed using other
Akka remote actors, or via HTTP by any other application:
this testifies once again the versatility of Hermes.

The NLP service constitutes the core algorithmic part of
the system. The algorithms supported by this component are
detailed in Section IV.
Persister and Indexer. All texts flowing into the system are
permanently stored and indexed so as to make them available
through search. Persistence and indexing are responsibility
of two long-running consumers, which listen to the clean-
text and tagged-text queues, and respectively index and

4https://dev.twitter.com/streaming/public
5In our implementation we use Redis (http://redis.io)
6We implement this module by using Apache Camel (http://camel.

apache.org/mail.html)
7https://github.com/GravityLabs/goose/wiki
8http://tika.apache.org
9http://akka.io

persist both texts and tagged texts as soon as they arrive.
To keep the architecture horizontally scalable and amenable
to large-scale processing, we use a NoSQL distributed key-
value store as a storage system, and a distributed multitenant-
capable full-text search engine as an indexing service.
Specifically, we resort to HBase and Elasticsearch10 for
persistence and indexing, respectively.
Virality. This is a module acting as both consumer and
producer. It listens to the tagged-text queue and adds virality
information to specific types of tagged texts, such as news or
tweets. Currently the tool monitors Twitter, Facebook, and
LinkedIn shares, which are retrieved by querying publicly-
available APIs.11 Texts decorated by virality information
can be rescheduled, and thus pushed to the tagged-text
queue again for further processing by the same module (and
by indexer and persister). Rescheduling happens based on
rescheduling-frequency and time-to-live parameters that can
be set by the user.
Frontend. This component consists of a single-page client
that interacts with a REST API exposing the needed textual
content. The client home page shows annotated texts ranked
by a relevance function described in Section IV. Users
can search (either in natural language or using smarter
syntax) for texts related to specific information needs. The
(JavaScript) single-page application is implemented in EC-
MAScript 6 using Facebook React; We also make use
of d3js to display graphs.12 The REST API is instead a
Play application.13 Section V provides more details and
screenshots of the frontend.

IV. ALGORITHMS

The NLP module of Hermes supports a number of text-
processing tasks, whose algorithmic solutions have been
designed with a few principles in mind: algorithms should
work well for various languages; they should require a
minimum amount of supervision; they should be able to
cope with short, noisy, unstructured text data that has sheer
volume, dynamic nature, and is often only available at query
time and thus cannot be preprocessed. The above needs raise
a variety of interesting technical challenges, requiring to
trade off between efficiency and effectiveness.

A. Entity recognition and disambiguation

The core NLP task in Hermes is entity recognition and
disambiguation (ERD). This task consists of three steps: (i)
Spotting, where a set of mentions is detected in the input
text, and for each mention a set of candidate entities is
retrieved from a given knowledge base; (ii) Disambiguation,

10https://hbase.apache.org/, https://www.elastic.co/
11http://newsharecounts.com, https://developers.facebook.

com/docs/graph-api,
https://developer.linkedin.com

12http://es6-features.org/, https://facebook.github.io/
react, https://d3js.org

13https://www.playframework.com

where for each mention associated with multiple candidate
entities, a single entity is selected to be linked to it; (iii)
Ranking, where the entities ultimately detected are ranked
according to some policy, e.g., annotation confidence.

Basic ERD. The ERD task needs an external knowledge
base that acts like an entity catalog. In this work we resort
to Wikipedia, which is the go-to resource for most of state-
of-the-art ERD approaches, due to its continuously growing
size (>5M pages in English), the support for multiple
languages, its free availability, and its trading off between
a catalog with a rigorous structure but low coverage and a
large text collection with unstructured and noisy content.

With Wikipedia as a knowledge base, we resort to the
well-established wikification approach to ERD, which was
first proposed by Miihalcea et al. [16], and then has had
a huge success in the NLP community [2], [11], [12], [27].
The main idea of the wikification process is to consider each
article in Wikipedia as an entity, and the anchor text of all
hyperlinks pointing to that article as the possible mentions
for that entity. All entities are organized in a graph structure
given by the underlying Wikipedia hyperlink graph, where
nodes correspond to entities and an arc from entity e1 to
entity e2 exists if e1 contains an hyperlink to e2 in its body.

In the wikification process spotting is easily performed
by generating all n-grams occurring in the input text and
looking them up in a table that maps Wikipedia anchor-texts
to their possible candidate entities. For disambiguation dif-
ferent options are available (see Section II). In this work we
resort to the well-established voting approach of Ferragina
et al. [2], dubbed Tagme, which we choose for the ability
to deal with short and unstructured text. Disambiguation
in Tagme is performed as follows. Given an input text
T , let MT denote all mentions extracted from T in the
spotting step, and, for each mention m ∈ MT , let E(m)
be the set of candidate entities of m. For a given entity
e, let also in(e) denote the in-neighbor entities of e in the
Wikipedia hyperlink graph. The main idea is to compute a
disambiguation score for each 〈mention–candidate entity〉
pair a 7→ e (based on all other 〈mention–candidate entity〉
pairs b 7→ e′ within the input text), and ultimately link each
mention a to the entity e∗ that maximizes that score, i.e.,
e∗ = argmaxe score(a 7→ e). Specifically, a measure of
relatedness between entities is used. Tagme employs the
popular Milne and Witten’s measure [8], which computes
relatedness as directly proportional to the number of in-
neighbors shared by the two entities to be compared:

rel(e1, e2) = (1)

= 1−max{log |in(e1)|, log |in(e2)|}−log |in(e1) ∩ in(e2)|
|W | −min{log |in(e1)|, log |in(e2)|}

,

where W is the number of Wikipedia articles. The contri-
bution, i.e., the vote, of mention b to the ultimate score of

a target 〈mention–candidate entity〉 pair a 7→ e is:

vote(a 7→ e | b) = 1

|E(b)|
∑

e′∈E(b)

rel(e, e′) Pr(e′ | b), (2)

where Pr(e′ | b) is the commonness of mapping e′ 7→ b,
i.e. the ratio between the number of times b′ appears in
a Wikipedia hyperlink pointing to e′ and the number of
all Wikipedia hyperlinks pointing to e′. The disambiguation
score of a 7→ e is:

score(a 7→ e) =
∑

b∈MT \{a}

vote(a 7→ e | b). (3)

Computing score(a 7→ e) needs to look at all other b 7→ e′

in the input text. Disambiguation thus takes O(N2) time,
where N =

∑
m∈MT

|E(m)|.
The last ERD step, i.e., ranking, is performed by assigning

each entity a ranking score defined as a combination (by
average) of disambiguation score with another factor dubbed
link probability, which is the ratio between the number of
occurrences of a mention as an anchor text in Wikipedia, and
the total number of its occurrences in the whole Wikipedia.
Entities with ranking score below a certain threshold are
discarded to prune un-meaningful annotations.

Hashing-based ERD. A major weakness of Tagme (and all
prominent state-of-the-art ERD methods) is its inefficiency
in handling long input documents or real-time constraints.
Inefficiency is mainly due to two critical points:

1) Milne and Witten’s relatedness measure takes
O(min{|in(e1)|, |in(e2)|}) time, where e1 and e2 are
the two entities to be compared (see Equation (1)).

2) The disambiguation score of each 〈mention–candidate
entity〉 pair has to be computed by looking at all
candidate entities of all other mentions in the text.
This gives a quadratic time complexity in the number
N of 〈mention–candidate entity〉 pairs.

We address the above criticalities by introducing two
levels of approximation based on hashing.

Issue 1: To speed up the computation of relatedness for a
single pair of entities we devise a solution based
on MinHash [28], which is a principled method
for quickly estimating the similarity between two
sets. Specifically, let U be a universe of elements,
and h(1), . . . , h(K) be a set of hash functions,
where h(i) : U → I ⊆ N, ∀i ∈ [1..K]. For
any set S ⊆ U and a hash function h(i), let also
h
(i)
min(S) = minx∈S h(i)(x). The basic MinHash

argument consists in estimating the Jaccard simi-
larity J(A,B) between any two sets A,B ⊆ U as:

1

K

K∑
i=1

1[h
(i)
min(A) = h

(i)
min(B)].

In our context we first perform an offline step,
taking K hash functions h(1), . . . , h(K), and com-
puting a MinHash signature of each entity e, i.e.,
a K-dimensional real-valued vector

ve =
[
h
(1)
min(in(e)), . . . h

(K)
min(in(e))

]
.

This steps takes O(Kn + K
∑

e deg(e)) =
O(K(n+m)), where n and m denote the number
of entities and arcs in the Wikipedia graph.
As far as the operations to be performed
online, we estimate (i) J(in(e1), in(e2)) as
1
K

∑K
i=1 1[ve1(i) = ve2(i)], and (ii) |in(e1) ∩

in(e2)| as J
1+J (|in(e1)|+|in(e2)|). The time com-

plexity of the online phase becomes O(K) (rather
than O(min{deg(e1), deg(e2)})). This method al-
lows for speeding up all computations where the
in-neighborhoods of the involved entities have size
> K (clearly, if min{deg(e1), deg(e2)} < K the
exact method is employed).

Issue 2: To speed-up the quadratic-time disambiguation-
score computation we employ a method based on
Locality Sensitive Hashing (LSH) [29]. LSH is a
technique to hash items so that similar items map
to the same buckets with high probability. The idea
is to apply LSH on the MinHash signatures of the
Wikipedia entities so as to bucketize entities into
groups exhibiting highly similar in-neighborhoods.
This way, the computation of the disambiguation
score can be simplified by comparing each can-
didate entity of a mention with the only entities
of other mentions that have at least one bucket in
common with it, i.e., the entities that contribute
more on the score computation. The entities that
have no common buckets with the one taken into
consideration are excluded from the voting.
Particularly, we have an offline phase where for
each entity e the e’s MinHash signature is split into
L groups of equal size. For each group i ∈ [1..L],
an LSH bucket bi(e) is computed. This phase
takes O(LnK

L) = O(Kn) time. Given an input
text T , the online phase instead requires to (i)
retrieve LSH buckets for all entities in T ; (ii)
compute an inverted index: for each bucket b,
entities(b) = {e | b(e) ∈ lsh(e)}; and (iii)
approximate score(a 7→ e) as:

1
|E(b)|

∑
e′∈buckets(e) rel(e, e

′) Pr(e′ | b).

Note that the aforementioned inverted index refers
to only the entities contained in the input text.
Thus, it has to be computed online, to avoid
wasting time in scanning unnecessary entities in-
cluded in the buckets. While the worst-case time
complexity of the LSH-based disambiguation-score
computation remains quadratic, in practice a large

benefit is expected, as only comparisons between
entities in the same bucket are performed. This is
testified by our experiments reported in Section VI.

B. Topic extraction, labeling and explanation

The ERD algorithm described above, with the two-level
hashing optimization, is able to efficiently tackle the issue
of extracting entities from any input text. Once the entities
have been extracted, Hermes could just present them to
the user as most of existing ERD approaches do. However,
displaying only entities without any relational structure
and/or semantic organization, often reveals insufficient to
help the user gather an immediate comprehension of the
semantic meaning hidden in the underlying text. Hermes
overcomes this limitation, which affects most of state-of-the-
art ERD tools, by enhancing its core entity-linking algorithm
with three critical features: (i) topic extraction, (ii) topic
labeling, and (iii) topic explanation.

Topic extraction. We devise a densest-subgraph-extraction
method [30] to identify semantically-coherent groups of
entities, so as to provide the user with the different themes
of an input text. We start by building a complete graph of the
entities within the document, weighting the arc connecting
any two entities by Milne and Witten’s relatedness. Next
we compute the densest subgraph (maximizing a notion of
density based on average weighted degree), remove it from
the graph and repeat the procedure until the graph is empty.
Each extracted subgraph identifies a topic of the input text.

Topic labeling. Each topic extracted from a document is
labeled with a category from the IPTC-SRS ontology, 14

an open-standard hierarchy for news categorization. We
consider the top-level categories and manually map each of
them onto a set of Wikipedia entities that best represent it.
Given a topic, we compute the similarity between each entity
in its subgraph and each category, as the average relatedness
to the entities representing the category. We assign each
entity in the topic subgraph the category achieving maximum
similarity. Each entity votes for its category, and each topic
is assigned the category obtaining the majority of votes.

Topic explanation. We enrich each entity group by in-
cluding extra-document entities that are well-explanatory of
the semantic context at hand. For each entity in a topic
subgraph we include a subset of the entities that are its
in- or out-neighbors in the Wikipedia graph, selected as
those maximizing the average semantic relatedness to the
other entities in the topic. This method was a natural and
efficient choice for Hermes, given that our core ERD
module relies on a graph representation of Wikipedia. The
vast literature about exploratory entity search describes
other approaches for building explanatory graphs around
query entities, for example including rich semantic relations

14https://iptc.org/metadata/

Figure 2: Hermes frontend: search tab Figure 3: Hermes frontend: text details

derived from domain-specific knowledge bases [31], [32]. In
future releases we will investigate whether our method can
be improved with ideas suggested by these approaches.

C. Additional features

The NLP module of Hermes supports a few additional
features, for which we rely on state-of-the-art solutions:
relevance of an article to a target (computed as average
semantic relatedness between each entity extracted from the
text and the target entity), document summarization based on
the work of Mihalcea and Tarau [33], and sentiment analysis
performed with the Stanford Core NLP framework [4].

V. FRONTEND

The frontend of Hermes is comprised of two tabs, Home
and Search. The Home tab shows the most relevant texts that
have been collected and annotated so far (the time horizon is
customizable). Texts are ranked according to the relevance
to a target (see Section IV). In the current implementation
the target is UniCredit, but this is customizable too. The
Search tab (Figure 2) allows the user to search for documents
satisfying specific criteria. By clicking on the down arrow
at the right corner of a text (Figure 3), further details are
shown, including topics labeled with categories, and an
entity explanation subgraph (see Section IV).

VI. EXPERIMENTS

We tested the performance of our ERD algorithm on three
public datasets.
TAGME. The first dataset is one of the datasets used for
evaluation in the work of Ferragina et al. [2]. The original
dataset is a collection of 186 001 text fragments drawn
from a Wikipedia snapshot dating to November 2009. Each
fragment is annotated with mentions and the corresponding
entities. We use a sample of 500 documents, with on average
4.51 annotations per document.
N3 Collection. The other two datasets that we consider
are the two English corpora in the N3 collection [34],
dubbed Reuters-128 and RSS-500. The former is a set of 128
economic news articles, with an average of 5.08 mentions
per document. The latter is a corpus of 500 texts (with an
average of 1.47 mentions per document) gathered by using
a list of RSS feeds of major worldwide newspapers.

We tested our ERD method on such data, comparing three
versions of the algorithm: (i) EXACT, (ii) LSH, and (iii)
LSH-MINHASH (LMH). EXACT is the algorithm of Ferragina
et al. [2], where no approximation is used. LSH considers
only one level of approximation, using LSH to bucketize
Wikipedia entities into groups that have highly similar in-
neighborhoods. However, the relatedness between any two
entities is still computed exactly (no MinHash approximation
is employed, see Section IV). LSH-MINHASH (LMH) is
our most optimized algorithm, which uses both levels of
approximation described in Section IV. We apply LSH to
restrict the computation of the voting scheme to the only
entities that have at least one bucket in common with a given
entity. Furthermore, we replace the exact computation of
Milne and Witten’s relatedness between two entities with a
version that approximates the size of the intersection of their
in-neighborhoods by considering their MinHash signatures.

Parameters. We ran LSH and LMH with several parameter
configurations. For N , the number of MinHash functions
used to compute the signature of each entity, we considered
N = 100, N = 200, and N = 500. For S, i.e. the size
of each LSH band (meaning that we divided each signature
of size N into L bands of size S), we considered S = 10,
S = 20, S = 50 and S = 100. To avoid building bands of
too small size, we used up to S = 20 for N = 100, and up
to S = 50 for N = 200. In all cases L = N/S.

Metrics. For each competing algorithm and for each con-
figuration of parameters, we evaluated performance in terms
of both accuracy of ERD (Precision, Recall, F-Measure)
and running time needed to perform ERD. For each dataset
and parameter configuration the metrics were computed
averaging over all the documents in the collection. For
robustness, running times of each competing method were
averaged over 10 runs. Results for the three datasets are
reported in Tables I, II, and III.

Results. The usage of LSH and MinHash signatures does
not seem to affect ERD accuracy: precision and recall are
always very close to the values obtained with the exact
version of the algorithm, with a small drop that is obviously
expected. At the same time, we notice that our approximated
algorithms achieve a remarkable gain regarding running
time: the disambiguation time per document is reduced by

Table I: Results for TAGME Dataset (avg over 10 runs)
N = 100 N = 100 N = 200 N = 200 N = 200 N = 500 N = 500 N= 500 N = 500
S = 10 S = 20 S = 10 S = 20 S = 50 S = 10 S = 20 S = 50 S = 100
L = 10 L = 5 L = 20 L = 10 L = 4 L = 50 L = 25 L = 10 L = 5

Exact LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH
P .691 .660 .594 .675 .675 .638 .638 .668 .534 .681 .681 .615 .613 .645 .451 .589 .589 .651 .651
R .556 .536 .483 .550 .550 .520 .520 .542 .433 .556 .556 .502 .501 .524 .367 .480 .480 .532 .532
FM .600 .574 .517 .589 .589 .557 .557 .581 .465 .595 .595 .536 .534 .562 .393 .514 .514 .569 .569
Td (ms) 663 171 31 143 32 147 59 155 37 142 36 196 122 173 61 131 50 146 67

Table II: Results for RSS Dataset (avg over 10 runs)
N = 100 N = 100 N = 200 N = 200 N = 200 N = 500 N = 500 N= 500 N = 500
S = 10 S = 20 S = 10 S = 20 S = 50 S = 10 S = 20 S = 50 S = 100
L = 10 L = 5 L = 20 L = 10 L = 4 L = 50 L = 25 L = 10 L = 5

Exact LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH
P .447 .533 .533 .542 .542 .542 .542 .538 .484 .546 .437 .517 .465 .517 .517 .533 .533 .488 .542
R .440 .525 .520 .533 .533 .533 .533 .529 .476 .538 .430 .508 .458 .508 .508 .525 .525 .480 .533
FM .442 .528 .528 .536 .536 .536 .536 .532 .479 .540 .432 .511 .460 .511 .511 .528 .528 .483 .536
Td (ms) 44 87 23 52 21 58 34 54 25 50 19 71 62 63 48 55 35 50 33

Table III: Results for Reuters Dataset (avg over 10 runs)
N = 100 N = 100 N = 200 N = 200 N = 200 N = 500 N = 500 N= 500 N = 500
S = 10 S = 20 S = 10 S = 20 S = 50 S = 10 S = 20 S = 50 S = 100
L = 10 L = 5 L = 20 L = 10 L = 4 L = 50 L = 25 L = 10 L = 5

Exact LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH LSH LMH
P .565 .524 .472 .513 .461 .483 .434 .523 .523 .539 .485 .437 .393 .466 .464 .507 .506 .536 .536
R .467 .431 .388 .421 .379 .394 .354 .429 .429 .443 .399 .356 .320 .382 .380 .416 .415 .441 .441
FM .504 .465 .419 .455 .410 .427 .384 .464 .464 .479 .431 .386 .347 .413 .411 .450 .449 .476 .476
Td (ms) 2923 454 28 308 29 387 55 304 46 387 34 321 123 310 97 324 69 275 61

2 and 1.5 orders of magnitude respectively in the case of
Reuters and TAGME, and of 4 times in the case of RSS
(which however consists of very short documents).

VII. CONCLUSION AND FUTURE WORK

We have presented Hermes, a novel NLP tool that
overcomes the main limitations of existing industrial solu-
tions. Based on an efficient and extendable message-passing
architecture, Hermes achieves large-scale processing, com-
pleteness, and versatility.

A number of improvements to the current system can
be considered. We plan to strengthen the architecture by
adding a dedicated queue to handle communication between
producers. We intend to enrich the front-end with statistics
about hot topics and authors, and to incorporate feedback
from the users about tagging accuracy.

REFERENCES

[1] J. Clarke, V. Srikumar, M. Sammons, and D. Roth, “An NLP Curator (or: How
I Learned to Stop Worrying and Love NLP Pipelines),” in LREC, 2012.

[2] P. Ferragina and U. Scaiella, “TAGME: on-the-fly annotation of short text
fragments (by wikipedia entities),” in CIKM, 2010.

[3] E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” in ACL
ETMTNLP, 2002.

[4] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. Mc-
Closky, “The Stanford CoreNLP natural language processing toolkit,” in ACL,
2014.

[5] M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and G. Weikum, “AIDA: an
online tool for accurate disambiguation of named entities in text and tables,”
PVLDB, vol. 4, no. 12, 2011.

[6] S. Dutta and G. Weikum, “C3EL: A joint model for cross-document co-
reference resolution and entity linking,” in EMNLP, 2015.

[7] S. Dutta and G. Weikum, “Cross-document co-reference resolution using
sample-based clustering with knowledge enrichment,” TACL, vol. 3, 2015.

[8] D. Milne and I. H. Witten, “Learning to Link with Wikipedia,” in CIKM, 2008.

[9] W. Shen, J. Wang, and J. Han, “Entity linking with a knowledge base: Issues,
techniques, and solutions,” TKDE, vol. 27, no. 2, 2015.

[10] X. Han, L. Sun, and J. Zhao, “Collective entity linking in web text: A graph-
based method,” in SIGIR, 2011.

[11] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol,
B. Taneva, S. Thater, and G. Weikum, “Robust disambiguation of named entities
in text,” in EMNLP, 2011.

[12] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti, “Collective
annotation of wikipedia entities in web text,” in KDD, 2009.

[13] A. Moro, A. Raganato, and R. Navigli, “Entity linking meets word sense
disambiguation: a unified approach,” TACL, vol. 2, 2014.

[14] F. Piccinno and P. Ferragina, “From tagme to wat: A new entity annotator,” in
ERD, 2014.

[15] R. Usbeck, A.-C. Ngonga Ngomo, R. Michael, S. Auer, D. Gerber, and A. Both,
“AGDISTIS - agnostic disambiguation of named entities using linked open
data,” in ECAI, 2014.

[16] R. Mihalcea and A. Csomai, “Wikify!: Linking documents to encyclopedic
knowledge,” in CIKM, 2007.

[17] “Stanford NER, nlp.stanford.edu/software/crf-ner.shtml.”
[Online]. Available: nlp.stanford.edu/software/CRF-NER.shtml

[18] L. Ratinov and D. Roth, “Design challenges and misconceptions in named
entity recognition,” in CoNLL, 2009.

[19] L. Ratinov, D. Roth, D. Downey, and M. Anderson, “Local and global
algorithms for disambiguation to wikipedia,” in ACL, 2011.

[20] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani, “Learning
relatedness measures for entity linking,” in CIKM, 2013.

[21] J. Hoffart, S. Seufert, D. B. Nguyen, M. Theobald, and G. Weikum, “Kore:
keyphrase overlap relatedness for entity disambiguation,” in CIKM, 2012.

[22] M. Cornolti, P. Ferragina, and M. Ciaramita, “A framework for benchmarking
entity-annotation systems,” in WWW, 2013.

[23] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani, “Dexter: An
open source framework for entity linking,” in ESAIR. ACM, 2013.

[24] R. Usbeck et al., “GERBIL – general entity annotation benchmark framework,”
in WWW, 2015.

[25] R. Blanco, G. Ottaviano, and E. Meij, “Fast and space-efficient entity linking
for queries,” in WSDM, 2015.

[26] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, “Improving efficiency and
accuracy in multilingual entity extraction,” in I-Semantics, 2013.

[27] S. Cucerzan, “Large-scale named entity disambiguation based on wikipedia
data,” in EMNLP-CoNLL, 2007.

[28] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-wise
independent permutations,” JCSS, vol. 60, no. 3, 2000.

[29] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing
the curse of dimensionality,” in STOC, 1998.

[30] M. Charikar, “Greedy approximation algorithms for finding dense components
in a graph,” in APPROX. Springer-Verlag, 2000.

[31] G. Kasneci, S. Elbassuoni, and G. Weikum, “Ming: Mining informative entity
relationship subgraphs,” in CIKM. ACM, 2009, pp. 1653–1656.

[32] S. Yogev, H. Roitman, D. Carmel, and N. Zwerdling, “Towards expressive
exploratory search over entity-relationship data,” in WWW Companion. ACM,
2012.

[33] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in EMNLP,
2004.

[34] M. Röder, R. Usbeck, S. Hellmann, D. Gerber, and A. Both, “N3 - A collection
of datasets for named entity recognition and disambiguation in the NLP
interchange format,” in LREC, 2014.

